A Contribution Towards the Numerical Study of Bubble Dynamics in Nucleate Boiling at Local Scale Using a Conservative Level Set Method


Book Description

Nucleate boiling is an efficient means of heat transfer that has been the subject of many studies which have lead to more empirical results than knowledge on the physical mechanisms that govern the phenomena. In this work, a conservative level set method (LSM) was applied to the study of bubble dynamics during nucleate pool boiling which reduces the computational cost of reinitialization techniques traditionally used with LSM to limit phase loss. Also a force-balance approach to modelling dynamic apparent contact angle (CA) was proposed in this study based on the physics of the moving contact line (CL). It was tested against the traditional CL velocity approach and validated in comparison to available experimental data. In comparison to the CL velocity model our approach reduces the non-physical stick/slip behaviour of the CL and allows a smoother transition from the minimum receding to the maximum advancing CA, which is more akin to the physical phenomena. It was also demonstrated that the heat transfer during bubble growth is proportional to the apparent CA.