A Modern Approach to Critical Phenomena


Book Description

Critical phenomena is one of the most exciting areas of modern physics. This 2007 book provides a thorough but economic introduction into the principles and techniques of the theory of critical phenomena and the renormalization group, from the perspective of modern condensed matter physics. Assuming basic knowledge of quantum and statistical mechanics, the book discusses phase transitions in magnets, superfluids, superconductors, and gauge field theories. Particular attention is given to topics such as gauge field fluctuations in superconductors, the Kosterlitz-Thouless transition, duality transformations, and quantum phase transitions - all of which are at the forefront of physics research. This book contains numerous problems of varying degrees of difficulty, with solutions. These problems provide readers with a wealth of material to test their understanding of the subject. It is ideal for graduate students and more experienced researchers in the fields of condensed matter physics, statistical physics, and many-body physics.




Modern Theory Of Critical Phenomena


Book Description

An important contributor to our current understanding of critical phenomena, Ma introduces the beginner--especially the graduate student with no previous knowledge of the subject-to fundamental theoretical concepts such as mean field theory, the scaling hypothesis, and the renormalization group. He then goes on to apply the renormalization group to selected problems, with emphasis on the underlying physics and the basic assumptions involved.







Quantum Field Theory and Critical Phenomena


Book Description

Describes particle physics and critical phenomena in statistical mechanics in a unified framework, incorporating graduate lecture notes from the 1970s and 1980s at several universities in Europe and the US. Deals with general field theory, functional integrals, and functional methods; renormalization properties of theories with symmetries and specific applications to particle physics; lattice gauge theories and asymptotic freedom in four dimensions; and the role of instantons and the application of instanton calculus to the large-order behavior of perturbation theory and the problem of summation of the perturbative expansion. Several chapters close with exercise, solutions or hints for which are provided. No dates are noted for the previous editions. Annotation copyright by Book News, Inc., Portland, OR




Critical Dynamics


Book Description

A comprehensive and unified introduction to describing and understanding complex interacting systems.




Statistical Mechanics of Lattice Systems


Book Description

A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.




Scaling and Renormalization in Statistical Physics


Book Description

This text provides a thoroughly modern graduate-level introduction to the theory of critical behaviour. It begins with a brief review of phase transitions in simple systems, then goes on to introduce the core ideas of the renormalisation group.




Elements of Phase Transitions and Critical Phenomena


Book Description

As an introductory account of the theory of phase transitions and critical phenomena, this book reflects lectures given by the authors to graduate students at their departments and is thus classroom-tested to help beginners enter the field. Most parts are written as self-contained units and every new concept or calculation is explained in detail without assuming prior knowledge of the subject. The book significantly enhances and revises a Japanese version which is a bestseller in the Japanese market and is considered a standard textbook in the field. It contains new pedagogical presentations of field theory methods, including a chapter on conformal field theory, and various modern developments hard to find in a single textbook on phase transitions. Exercises are presented as the topics develop, with solutions found at the end of the book, making the text useful for self-teaching, as well as for classroom learning.




Understanding the Fundamental Constituents of Matter


Book Description

During July and August of 1976 a group of 90 physicists from 56 laboratories in 21 countries met in Erice for the 14th Course of the International School of Subnuclear Physics. The countries represented were Argentina, Australia, Austria, Belgium, Denmark, the Federal Republic of Germany, France, the German Democratic Republic, Greece, Israel, Italy, Japan, Mexico, Nigeria, Norway, Sweden, the United Kingdom, the United States of America, Vietnam, and Yugoslavia. The School was sponsored by the Italian Ministry of Public Education (MPI), the Italian Ministry of Scientific and Technological Research (MRST), the North Atlantic Treaty Organi zation (NATO), the Regional Sicilian Government (ERS), and the Weizmann Institute of Science. The program of the School was mainly devoted to the elucida tion and discussion of the progress achieved in the theoretical and experimental understanding of the fundamental constituents of matter. On the theoretical front we had a series of remarkable lecturers (C. N. Yang, S. Weinberg, G. C. Wick) attempting a description of finite size particles. Another group of lecturers covered such topics as the understanding of the new particles (H. J. Lipkin), whether or not jets really exist (E. Lillethun), and the unexpected A-dependence of massive dileptons produced in high-energy proton- nucleus collisions (J. W. Cronin). Two other outstanding questions were covered by E. Leader and G. Preparata respectively: whether strong interactions are still within the Regge framework, and if it is really possible to master strong interactions. A. J. S.




Lectures On Phase Transitions And The Renormalization Group


Book Description

Covering the elementary aspects of the physics of phases transitions and the renormalization group, this popular book is widely used both for core graduate statistical mechanics courses as well as for more specialized courses. Emphasizing understanding and clarity rather than technical manipulation, these lectures de-mystify the subject and show precisely "how things work." Goldenfeld keeps in mind a reader who wants to understand why things are done, what the results are, and what in principle can go wrong. The book reaches both experimentalists and theorists, students and even active researchers, and assumes only a prior knowledge of statistical mechanics at the introductory graduate level.Advanced, never-before-printed topics on the applications of renormalization group far from equilibrium and to partial differential equations add to the uniqueness of this book.