Neural Network Learning and Expert Systems


Book Description

presents a unified and in-depth development of neural network learning algorithms and neural network expert systems




Hybrid Architectures for Intelligent Systems


Book Description

Hybrid architecture for intelligent systems is a new field of artificial intelligence concerned with the development of the next generation of intelligent systems. This volume is the first book to delineate current research interests in hybrid architectures for intelligent systems. The book is divided into two parts. The first part is devoted to the theory, methodologies, and algorithms of intelligent hybrid systems. The second part examines current applications of intelligent hybrid systems in areas such as data analysis, pattern classification and recognition, intelligent robot control, medical diagnosis, architecture, wastewater treatment, and flexible manufacturing systems. Hybrid Architectures for Intelligent Systems is an important reference for computer scientists and electrical engineers involved with artificial intelligence, neural networks, parallel processing, robotics, and systems architecture.




Hybrid Neural Systems


Book Description

Hybrid neural systems are computational systems which are based mainly on artificial neural networks and allow for symbolic interpretation or interaction with symbolic components. This book is derived from a workshop held during the NIPS'98 in Denver, Colorado, USA, and competently reflects the state of the art of research and development in hybrid neural systems. The 26 revised full papers presented together with an introductory overview by the volume editors have been through a twofold process of careful reviewing and revision. The papers are organized in the following topical sections: structured connectionism and rule representation; distributed neural architectures and language processing; transformation and explanation; robotics, vision, and cognitive approaches.




Hybrid Neural Network and Expert Systems


Book Description

Hybrid Neural Network and Expert Systems presents the basics of expert systems and neural networks, and the important characteristics relevant to the integration of these two technologies. Through case studies of actual working systems, the author demonstrates the use of these hybrid systems in practical situations. Guidelines and models are described to help those who want to develop their own hybrid systems. Neural networks and expert systems together represent two major aspects of human intelligence and therefore are appropriate for integration. Neural networks represent the visual, pattern-recognition types of intelligence, while expert systems represent the logical, reasoning processes. Together, these technologies allow applications to be developed that are more powerful than when each technique is used individually. Hybrid Neural Network and Expert Systems provides frameworks for understanding how the combination of neural networks and expert systems can produce useful hybrid systems, and illustrates the issues and opportunities in this dynamic field.




Hybrid Neural Network and Expert Systems


Book Description

Presents the latest on research and development in hybrid neural network and expert systems. The basics of expert systems and neural networks are summarized and the important characteristics relevant to the integration of these two technologgies are discussed. Through case studies of actual working systems, the author demonstrates the use of these hybrid systems in practical situations.




Expert Systems


Book Description

This six-volume set presents cutting-edge advances and applications of expert systems. Because expert systems combine the expertise of engineers, computer scientists, and computer programmers, each group will benefit from buying this important reference work. An "expert system" is a knowledge-based computer system that emulates the decision-making ability of a human expert. The primary role of the expert system is to perform appropriate functions under the close supervision of the human, whose work is supported by that expert system. In the reverse, this same expert system can monitor and double check the human in the performance of a task. Human-computer interaction in our highly complex world requires the development of a wide array of expert systems. Expert systems techniques and applications are presented for a diverse array of topics including Experimental design and decision support The integration of machine learning with knowledge acquisition for the design of expert systems Process planning in design and manufacturing systems and process control applications Knowledge discovery in large-scale knowledge bases Robotic systems Geograhphic information systems Image analysis, recognition and interpretation Cellular automata methods for pattern recognition Real-time fault tolerant control systems CAD-based vision systems in pattern matching processes Financial systems Agricultural applications Medical diagnosis




Artificial Intelligence in the Age of Neural Networks and Brain Computing


Book Description

Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks




Agent-Based Hybrid Intelligent Systems


Book Description

Solving complex problems in real-world contexts, such as financial investment planning or mining large data collections, involves many different sub-tasks, each of which requires different techniques. To deal with such problems, a great diversity of intelligent techniques are available, including traditional techniques like expert systems approaches and soft computing techniques like fuzzy logic, neural networks, or genetic algorithms. These techniques are complementary approaches to intelligent information processing rather than competing ones, and thus better results in problem solving are achieved when these techniques are combined in hybrid intelligent systems. Multi-Agent Systems are ideally suited to model the manifold interactions among the many different components of hybrid intelligent systems. This book introduces agent-based hybrid intelligent systems and presents a framework and methodology allowing for the development of such systems for real-world applications. The authors focus on applications in financial investment planning and data mining.




Engineering Intelligent Hybrid Multi-Agent Systems


Book Description

Engineering Intelligent Hybrid Multi-Agent Systems is about building intelligent hybrid systems. Included is coverage of applications and design concepts related to fusion systems, transformation systems and combination systems. These applications are in areas involving hybrid configurations of knowledge-based systems, case-based reasoning, fuzzy systems, artificial neural networks, genetic algorithms, and in knowledge discovery and data mining. Through examples and applications a synergy of these subjects is demonstrated. The authors introduce a multi-agent architectural theory for engineering intelligent associative hybrid systems. The architectural theory is described at both the task structure level and the computational level. This problem-solving architecture is relevant for developing knowledge agents and information agents. An enterprise-wide system modeling framework is outlined to facilitate forward and backward integration of systems developed in the knowledge, information, and data engineering layers of an organization. In the modeling process, software engineering aspects like agent oriented analysis, design and reuse are developed and described. Engineering Intelligent Hybrid Multi-Agent Systems is the first book in the field to provide details of a multi-agent architecture for building intelligent hybrid systems.




Neuro-Fuzzy Architectures and Hybrid Learning


Book Description

The advent of the computer age has set in motion a profound shift in our perception of science -its structure, its aims and its evolution. Traditionally, the principal domains of science were, and are, considered to be mathe matics, physics, chemistry, biology, astronomy and related disciplines. But today, and to an increasing extent, scientific progress is being driven by a quest for machine intelligence - for systems which possess a high MIQ (Machine IQ) and can perform a wide variety of physical and mental tasks with minimal human intervention. The role model for intelligent systems is the human mind. The influ ence of the human mind as a role model is clearly visible in the methodolo gies which have emerged, mainly during the past two decades, for the con ception, design and utilization of intelligent systems. At the center of these methodologies are fuzzy logic (FL); neurocomputing (NC); evolutionary computing (EC); probabilistic computing (PC); chaotic computing (CC); and machine learning (ML). Collectively, these methodologies constitute what is called soft computing (SC). In this perspective, soft computing is basically a coalition of methodologies which collectively provide a body of concepts and techniques for automation of reasoning and decision-making in an environment of imprecision, uncertainty and partial truth.