Combined Heat and Power


Book Description

Combined Heat and Power Generation is a concise, up-to-date and accessible guide to the combined delivery of heat and power to anything, from a single home to a municipal power plant. Breeze discusses the historical background for CHP and why it is set to be a key emission control strategy for the 21st Century. Various technologies such as piston engines, gas turbines and fuel cells are discussed. Economic and environmental factors also are considered and analyzed, making this a very valuable resource for those involved with the research, design, implementation and management of the provision of heat and power. - Discusses the historical background of combined heat and power usage and why CHP is seen as a key emission control strategy for the 21st Century - Explores the technological aspects of CHP in a clear and concise style and delves into various key technologies, such as piston engines, steam and gas turbines and fuel cells - Evaluates the economic factors of CHP and the installation of generation systems, along with energy conversion efficiencies




Power Generation Technologies


Book Description

This book makes intelligible the wide range of electricity generating technologies available today, as well as some closely allied technologies such as energy storage. The book opens by setting the many power generation technologies in the context of global energy consumption, the development of the electricity generation industry and the economics involved in this sector. A series of chapters are each devoted to assessing the environmental and economic impact of a single technology, including conventional technologies, nuclear and renewable (such as solar, wind and hydropower). The technologies are presented in an easily digestible form.Different power generation technologies have different greenhouse gas emissions and the link between greenhouse gases and global warming is a highly topical environmental and political issue. With developed nations worldwide looking to reduce their emissions of carbon dioxide, it is becoming increasingly important to explore the effectiveness of a mix of energy generation technologies.Power Generation Technologies gives a clear, unbiased review and comparison of the different types of power generation technologies available. In the light of the Kyoto protocol and OSPAR updates, Power Generation Technologies will provide an invaluable reference text for power generation planners, facility managers, consultants, policy makers and economists, as well as students and lecturers of related Engineering courses.· Provides a unique comparison of a wide range of power generation technologies - conventional, nuclear and renewable· Describes the workings and environmental impact of each technology· Evaluates the economic viability of each different power generation system




Integration of Distributed Generation in the Power System


Book Description

The integration of new sources of energy like wind power, solar-power, small-scale generation, or combined heat and power in the power grid is something that impacts a lot of stakeholders: network companies (both distribution and transmission), the owners and operators of the DG units, other end-users of the power grid (including normal consumers like you and me) and not in the least policy makers and regulators. There is a lot of misunderstanding about the impact of DG on the power grid, with one side (including mainly some but certainly not all, network companies) claiming that the lights will go out soon, whereas the other side (including some DG operators and large parks of the general public) claiming that there is nothing to worry about and that it's all a conspiracy of the large production companies that want to protect their own interests and keep the electricity price high. The authors are of the strong opinion that this is NOT the way one should approach such an important subject as the integration of new, more environmentally friendly, sources of energy in the power grid. With this book the authors aim to bring some clarity to the debate allowing all stakeholders together to move to a solution. This book will introduce systematic and transparent methods for quantifying the impact of DG on the power grid.




Small and Micro Combined Heat and Power (CHP) Systems


Book Description

Small and micro combined heat and power (CHP) systems are a form of cogeneration technology suitable for domestic and community buildings, commercial establishments and industrial facilities, as well as local heat networks. One of the benefits of using cogeneration plant is a vastly improved energy efficiency: in some cases achieving up to 80–90% systems efficiency, whereas small-scale electricity production is typically at well below 40% efficiency, using the same amount of fuel. This higher efficiency affords users greater energy security and increased long-term sustainability of energy resources, while lower overall emissions levels also contribute to an improved environmental performance.Small and micro combined heat and power (CHP) systems provides a systematic and comprehensive review of the technological and practical developments of small and micro CHP systems.Part one opens with reviews of small and micro CHP systems and their techno-economic and performance assessment, as well as their integration into distributed energy systems and their increasing utilisation of biomass fuels. Part two focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines, gas turbines and microturbines, Stirling engines, organic Rankine cycle process and fuel cell systems. Heat-activated cooling (i.e. trigeneration) technologies and energy storage systems, of importance to the regional/seasonal viability of this technology round out this section. Finally, part three covers the range of applications of small and micro CHP systems, from residential buildings and district heating, to commercial buildings and industrial applications, as well as reviewing the market deployment of this important technology.With its distinguished editor and international team of expert contributors, Small and micro combined heat and power (CHP) systems is an essential reference work for anyone involved or interested in the design, development, installation and optimisation of small and micro CHP systems. - Reviews small- and micro-CHP systems and their techno-economic and performance assessment - Explores integration into distributed energy systems and their increasing utilisation of biomass fuels - Focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines




Numerical Simulation for Next Generation Thermal Power Plants


Book Description

The book provides highly specialized researchers and practitioners with a major contribution to mathematical models’ developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models.




Evolutionary Computation in Scheduling


Book Description

Presents current developments in the field of evolutionary scheduling and demonstrates the applicability of evolutionary computational techniques to solving scheduling problems This book provides insight into the use of evolutionary computations (EC) in real-world scheduling, showing readers how to choose a specific evolutionary computation and how to validate the results using metrics and statistics. It offers a spectrum of real-world optimization problems, including applications of EC in industry and service organizations such as healthcare scheduling, aircraft industry, school timetabling, manufacturing systems, and transportation scheduling in the supply chain. It also features problems with different degrees of complexity, practical requirements, user constraints, and MOEC solution approaches. Evolutionary Computation in Scheduling starts with a chapter on scientometric analysis to analyze scientific literature in evolutionary computation in scheduling. It then examines the role and impacts of ant colony optimization (ACO) in job shop scheduling problems, before presenting the application of the ACO algorithm in healthcare scheduling. Other chapters explore task scheduling in heterogeneous computing systems and truck scheduling using swarm intelligence, application of sub-population scheduling algorithm in multi-population evolutionary dynamic optimization, task scheduling in cloud environments, scheduling of robotic disassembly in remanufacturing using the bees algorithm, and more. This book: Provides a representative sampling of real-world problems currently being tackled by practitioners Examines a variety of single-, multi-, and many-objective problems that have been solved using evolutionary computations, including evolutionary algorithms and swarm intelligence Consists of four main parts: Introduction to Scheduling Problems, Computational Issues in Scheduling Problems, Evolutionary Computation, and Evolutionary Computations for Scheduling Problems Evolutionary Computation in Scheduling is ideal for engineers in industries, research scholars, advanced undergraduates and graduate students, and faculty teaching and conducting research in Operations Research and Industrial Engineering.




Power Generation from Solid Fuels


Book Description

Power Generation from Solid Fuels introduces the different technologies to produce heat and power from solid fossil (hard coal, brown coal) and renewable (biomass, waste) fuels, such as combustion and gasification, steam power plants and combined cycles etc. The book discusses technologies with regard to their efficiency, emissions, operational behavior, residues and costs. Besides proven state of the art processes, the focus is on the potential of new technologies currently under development or demonstration. The main motivation of the book is to explain the technical possibilities for reducing CO2 emissions from solid fuels. The strategies which are treated are: more efficient power and heat generation technologies, processes for the utilisation of renewable solid fuels, such as biomass and waste, and technologies for carbon capture and storage. Power Generation from Solid Fuels provides, both to academia and industry, a concise treatment of industrial combustion of all types of solid, hopefully inspiring the next generation of engineers and scientists.




Reinventing Fire


Book Description

Imagine fuel without fear. No climate change. No oil spills, no dead coalminers, no dirty air, no devastated lands, no lost wildlife. No energy poverty. No oil-fed wars, tyrannies, or terrorists. No leaking nuclear wastes or spreading nuclear weapons. Nothing to run out. Nothing to cut off. Nothing to worry about. Just energy abundance, benign and affordable, for all, forever. That richer, fairer, cooler, safer world is possible, practical, even profitable-because saving and replacing fossil fuels now works better and costs no more than buying and burning them. Reinventing Fire shows how business-motivated by profit, supported by civil society, sped by smart policy-can get the US completely off oil and coal by 2050, and later beyond natural gas as well. Authored by a world leader on energy and innovation, the book maps a robust path for integrating real, here-and-now, comprehensive energy solutions in four industries-transportation, buildings, electricity, and manufacturing-melding radically efficient energy use with reliable, secure, renewable energy supplies.Popular in tone and rooted in applied hope, Reinventing Fire shows how smart businesses are creating a potent, global, market-driven, and explosively growing movement to defossilize fuels. It points readers to trillions in savings over the next 40 years, and trillions more in new business opportunities.Whether you care most about national security, or jobs and competitive advantage, or climate and environment, this major contribution by world leaders in energy innovation offers startling innovations will support your values, inspire your support, and transform your sense of possibility.Pragmatic citizens today are more interested in outcomes than motives. Reinventing Fire answers this trans-ideological call. Whether you care most about national security, or jobs and competitive advantage, or climate and environment, its startling innovations will support your values, inspire your support, and transform your sense of possibility.




Embedded Generation


Book Description

This book, intended for both students and practising engineers, addresses all the issues pertinent to the implementation of embedded generation.




Energy and Civilization


Book Description

A comprehensive account of how energy has shaped society throughout history, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. "I wait for new Smil books the way some people wait for the next 'Star Wars' movie. In his latest book, Energy and Civilization: A History, he goes deep and broad to explain how innovations in humans' ability to turn energy into heat, light, and motion have been a driving force behind our cultural and economic progress over the past 10,000 years. —Bill Gates, Gates Notes, Best Books of the Year Energy is the only universal currency; it is necessary for getting anything done. The conversion of energy on Earth ranges from terra-forming forces of plate tectonics to cumulative erosive effects of raindrops. Life on Earth depends on the photosynthetic conversion of solar energy into plant biomass. Humans have come to rely on many more energy flows—ranging from fossil fuels to photovoltaic generation of electricity—for their civilized existence. In this monumental history, Vaclav Smil provides a comprehensive account of how energy has shaped society, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. Humans are the only species that can systematically harness energies outside their bodies, using the power of their intellect and an enormous variety of artifacts—from the simplest tools to internal combustion engines and nuclear reactors. The epochal transition to fossil fuels affected everything: agriculture, industry, transportation, weapons, communication, economics, urbanization, quality of life, politics, and the environment. Smil describes humanity's energy eras in panoramic and interdisciplinary fashion, offering readers a magisterial overview. This book is an extensively updated and expanded version of Smil's Energy in World History (1994). Smil has incorporated an enormous amount of new material, reflecting the dramatic developments in energy studies over the last two decades and his own research over that time.