Surfaces with Constant Mean Curvature


Book Description

The mean curvature of a surface is an extrinsic parameter measuring how the surface is curved in the three-dimensional space. A surface whose mean curvature is zero at each point is a minimal surface, and it is known that such surfaces are models for soap film. A surface whose mean curvature is constant but nonzero is obtained when we try to minimize the area of a closed surface without changing the volume it encloses. A trivial example of a surface of constant mean curvature is the sphere. A nontrivial example is provided by the constant curvature torus, whose discovery in 1984 gave a powerful incentive for studying such surfaces. Later, many examples of constant mean curvature surfaces were discovered using various methods of analysis, differential geometry, and differential equations. In this book, the author presents the numerous examples of constant mean curvature surfaces and the techniques for studying them. Many figures illustrate the presented results and allow the reader to visualize and better understand these beautiful objects.













Constant Mean Curvature Surfaces of Revolution and Their Stability


Book Description

The field of Constant Mean Curvature (CMC) surfaces had its beginning in the nineteenth century with the works of Riemann, Weierstrass and Enneper. Recently it has enjoyed a surge of growth due to the advent of computer graphics. This field has applications in many applied fields such as applied physics, polymer science, architecture, and computer graphics. The method for the construction of CMC surfaces was developed by J. Dorfmeister, F. Pedit, and H. Wu; it is commonly called the DPW method. The DPW method is a Weierstrass type representation for CMC surfaces, using techniques of integrable systems. It gives an algorithm to compute all CMC surfaces. This book includes: explicit conformal parametrizations of CMC surfaces of revolution, in each of the three space forms Euclidean 3-space, spherical 3-space and hyperbolic 3-space by using the DPW method; the lower bounds for the Morse index and nullity of CMC tori of revolution in the 3-sphere; the spectra of Jacobi operators for CMC tori of revolution in the 3-sphere; stability properties of CMC surfaces of revolution in general simply-connected spherically symmetric 3-spaces, and in the particular case of Schwarzschild space.