On Parametric Surfaces with Constant Mean Curvature Along Given Smarandache Curves in Lie Group


Book Description

This paper finds sufficient conditions to determine a surface whose mean curvature along a given Smarandache curve is constant in a three-dimensional Lie group. This is accomplished by using the Frenet frames of the specified curve to express surfaces that span the 𝑇𝑁, 𝑁𝐵, and 𝑇𝐵 Smarandache curves parametrically. In terms of the curvatures of given Smarandache curves, marching scale functions, and their partial derivatives, the mean curvatures of these surfaces along the given 𝑇𝑁, 𝑁𝐵, and 𝑇𝐵 Smarandache curves are determined. Sufficient conditions are found to maintain the provided mean curvatures of the resulting surfaces at a constant value. Finally, some examples are provided.







Surfaces with Constant Mean Curvature


Book Description

The mean curvature of a surface is an extrinsic parameter measuring how the surface is curved in the three-dimensional space. A surface whose mean curvature is zero at each point is a minimal surface, and it is known that such surfaces are models for soap film. There is a rich and well-known theory of minimal surfaces. A surface whose mean curvature is constant but nonzero is obtained when we try to minimize the area of a closed surface without changing the volume it encloses. An easy example of a surface of constant mean curvature is the sphere. A nontrivial example is provided by the constant curvature torus, whose discovery in 1984 gave a powerful incentive for studying such surfaces. Later, many examples of constant mean curvature surfaces were discovered using various methods of analysis, differential geometry, and differential equations. It is now becoming clear that there is a rich theory of surfaces of constant mean curvature. In this book, the author presents numerous examples of constant mean curvature surfaces and techniques for studying them. Many finely rendered figures illustrate the results and allow the reader to visualize and better understand these beautiful objects. The book is suitable for advanced undergraduates, graduate students and research mathematicians interested in analysis and differential geometry.