Contact Problems in Elasticity


Book Description

The contact of one deformable body with another lies at the heart of almost every mechanical structure. Here, in a comprehensive treatment, two of the field's leading researchers present a systematic approach to contact problems. Using variational formulations, Kikuchi and Oden derive a multitude of new results, both for classical problems and for nonlinear problems involving large deflections and buckling of thin plates with unilateral supports, dry friction with nonclassical laws, large elastic and elastoplastic deformations with frictional contact, dynamic contacts with dynamic frictional effects, and rolling contacts. This method exposes properties of solutions obscured by classical methods, and it provides a basis for the development of powerful numerical schemes. Among the novel results presented here are algorithms for contact problems with nonlinear and nonlocal friction, and very effective algorithms for solving problems involving the large elastic deformation of hyperelastic bodies with general contact conditions. Includes detailed discussion of numerical methods for nonlinear materials with unilateral contact and friction, with examples of metalforming simulations. Also presents algorithms for the finite deformation rolling contact problem, along with a discussion of numerical examples.







Boundary Integral Equations in Elasticity Theory


Book Description

by the author to the English edition The book aims to present a powerful new tool of computational mechanics, complex variable boundary integral equations (CV-BIE). The book is conceived as a continuation of the classical monograph by N. I. Muskhelishvili into the computer era. Two years have passed since the Russian edition of the present book. We have seen growing interest in numerical simulation of media with internal structure, and have evidence of the potential of the new methods. The evidence was especially clear in problems relating to multiple grains, blocks, cracks, inclusions and voids. This prompted me, when preparing the English edition, to place more emphasis on such topics. The other change was inspired by Professor Graham Gladwell. It was he who urged me to abridge the chain of formulae and to increase the number of examples. Now the reader will find more examples showing the potential and advantages of the analysis. The first chapter of the book contains a simple exposition of the theory of real variable potentials, including the hypersingular potential and the hypersingular equations. This makes up for the absence of such exposition in current textbooks, and reveals important links between the real variable BIE and the complex variable counterparts. The chapter may also help readers who are learning or lecturing on the boundary element method.




Numerical Methods for Exterior Problems


Book Description

This book provides a comprehensive introduction to the numerical methods for the exterior problems in partial differential equations frequently encountered in science and engineering computing. The coverage includes both traditional and novel methods. A concise introduction to the well-posedness of the problems is given, establishing a solid foundation for the methods.




Numerical Methods for Partial Differential Equations


Book Description

This volume is designed as an introduction to the concepts of modern numerical analysis as they apply to partial differential equations. The book contains many practical problems and their solutions, but at the same time, strives to expose the pitfalls--such as overstability, consistency requirements, and the danger of extrapolation to nonlinear problems methods used on linear problems. Numerical Methods for Partial Differential Equations, Third Edition reflects the great accomplishments that have taken place in scientific computation in the fifteen years since the Second Edition was published. This new edition is a drastic revision of the previous one, with new material on boundary elements, spectral methods, the methods of lines, and invariant methods. At the same time, the new edition retains the self-contained nature of the older version, and shares the clarity of its exposition and the integrity of its presentation. Material on finite elements and finite differences have been merged, and now constitute equal partners Additional material has been added on boundary elements, spectral methods, the method of lines, and invariant methods References have been updated, and reflect the additional material Self-contained nature of the Second Edition has been maintained Very suitable for PDE courses




Complex Variable Methods in Plane Elasticity


Book Description

This book deals systematically with the mathematical theory of plane elasto-statics by using complex variable methods, together with many results originated by the author. The problems considered are reduced to integral equations, Fredholem or singular, which are rigorously proved to be uniquely solvable. Particular attention is paid to the subjects of crack problems in the quite general case, especially those of composite media, which are solved by a unified method. The methods used in this book are constructive so that they may be used in practice.




A Bibliography for the Numerical Solution of Partial Differential Equations


Book Description

A list of 2561 references to the numerical solution of partial differential equations has been compiled. References to reviews in several abstracting journals have been given, and a crude index has been prepared. (Author).