The Method of Weighted Residuals and Variational Principles


Book Description

This classic book covers the solution of differential equations in science and engineering in such as way as to provide an introduction for novices before progressing toward increasingly more difficult problems. The Method of Weighted Residuals and Variational Principles describes variational principles, including how to find them and how to use them to construct error bounds and create stationary principles. The book also illustrates how to use simple methods to find approximate solutions, shows how to use the finite element method for more complex problems, and provides detailed information on error bounds. Problem sets make this book ideal for self-study or as a course text.




Advanced Numerical and Semi-Analytical Methods for Differential Equations


Book Description

Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.




The Method of Weighted Residuals and Variational Principles


Book Description

This classic book covers the solution of differential equations in science and engineering in such as way as to provide an introduction for novices before progressing toward increasingly more difficult problems. The Method of Weighted Residuals and Variational Principles describes variational principles, including how to find them and how to use them to construct error bounds and create stationary principles. The book also illustrates how to use simple methods to find approximate solutions, shows how to use the finite element method for more complex problems, and provides detailed information on error bounds. Problem sets make this book ideal for self-study or as a course text.




Weighted Residual Methods


Book Description

Weighted Residual Methods: Principles, Modifications and Applications introduces a range of WRMs, providing examples that show how they can be used to solve complex engineering problems with greater accuracy and computational efficiency. Examples focus on non-linear problems, including the motion of a spherical particle, nanofluid flow and heat transfer, magnetohydrodynamic flow and heat transfer, and micropolar fluid flow and heat transfer. These are important factors in understanding processes, such as filtration, combustion, air and water pollution and micro contamination. In addition to the applications, the reader is provided with full derivations of equations and summaries of important field research. - Includes the basic code for each method, giving readers a head start in using WRMs for computational modeling - Provides full derivations of important governing equations in a number of emerging fields of study - Offers numerous, detailed examples of a range of applications in heat transfer, nanotechnology, medicine, and more




Numerical Analysis


Book Description

Offering a clear, precise and accessible presentation, this book gives students the solid support they need to master basic numerical analysis techniques. It is suitable for a course in Numerical Methods for under-graduate students of all branches of engineering, students of Master of Computer Applications (MCA) and Bachelor of Computer Applications (BCA), and students pursuing diploma courses in engineering disciplines. The book can also serve as a useful reference for students of mathe-matics and statistics. The book focuses on core areas of numerical analysis such as errors in numerical computation, root finding, solution of algebraic equations, interpolation, numerical calculus, initial value problems, boundary value problems and eigenvalues. The underlying mathematical concepts are high-lighted through numerous worked-out examples. The section-end exercises contain plenty of problems with appropriate hints in order to motivate the students to work out problems for a deeper insight into subject concepts.










Computational Techniques for Fluid Dynamics 1


Book Description

This well-known 2-volume textbook provides senior undergraduate and postgraduate engineers, scientists and applied mathematicians with the specific techniques, and the framework to develop skills in using the techniques in the various branches of computational fluid dynamics. A solutions manual to the exercises is in preparation.




Energy and Environment Materials (C-MRS)


Book Description

Selected, peer reviewed papers from the 2009 C-MRS Annual Meeting “Energy and Environmental Materials”, held in Suzhou, China, Oct. 15-17, 2009




Coastal, Estuarial and Harbour Engineer's Reference Book


Book Description

A major new reference book bringing together wide-ranging expert guidance on coastal engineering, including harbours and estuaries. It covers both traditional engineering topics and the fast developing areas of mathematical modelling and computer simulation.