A Practical Approach to Medical Image Processing


Book Description

The ability to manipulate and analyze pictorial information to improve medical diagnosis, monitoring, and therapy via imaging is a valuable tool that every professional working in radiography, medical imaging, and medical physics should utilize. However, previous texts on the subject have only approached the subject from a programming or computer s




Guide to Medical Image Analysis


Book Description

This book presents a comprehensive overview of medical image analysis. Practical in approach, the text is uniquely structured by potential applications. Features: presents learning objectives, exercises and concluding remarks in each chapter, in addition to a glossary of abbreviations; describes a range of common imaging techniques, reconstruction techniques and image artefacts; discusses the archival and transfer of images, including the HL7 and DICOM standards; presents a selection of techniques for the enhancement of contrast and edges, for noise reduction and for edge-preserving smoothing; examines various feature detection and segmentation techniques, together with methods for computing a registration or normalisation transformation; explores object detection, as well as classification based on segment attributes such as shape and appearance; reviews the validation of an analysis method; includes appendices on Markov random field optimization, variational calculus and principal component analysis.




Orthopedic Imaging


Book Description

Featuring over 4,000 large-size illustrations and unique, effective pedagogy, the Fifth Edition of Dr. Greenspan's best-seller is the ideal teaching text on musculoskeletal imaging for radiologists and orthopedists at every level of training. Orthopedic Imaging: A Practical Approach covers all orthopedic problems and imaging modalities and offers indispensable guidance on selecting cost-effective imaging techniques. The Fifth Edition has a new full-color design, with colorized tables and schematics and full-color illustrations including PET-CT. All conventional tomography has been replaced by CT. Coverage of MRI—the scan of choice for more clinical situations than ever—has been greatly expanded, especially in areas related to arthritis. More three-dimensional CT scans have been added, particularly to areas covering trauma. Musculoskeletal ultrasound coverage has been increased. Practical Points to Remember appear at the end of each chapter to outline salient points. A companion website will offer the fully searchable text and images.




Digital Imaging and Communications in Medicine (DICOM)


Book Description

This is the second edition of a very popular book on DICOM that introduces this complex standard from a very practical point of view. It is aimed at a broad audience of radiologists, clinical administrators, information technologists, medical students, and lecturers. The book provides a gradual, down to earth introduction to DICOM, accompanied by an analysis of the most common problems associated with its implementation. Compared with the first edition, many improvements and additions have been made, based on feedback from readers. Whether you are running a teleradiology project or writing DICOM software, this book will provide you with clear and helpful guidance. It will prepare you for any DICOM projects or problem solving, and assist you in taking full advantage of multifaceted DICOM functionality.




Digital Image Processing: Practical Approach


Book Description

The SpringerBrief covers fundamentals of digital image processing including image concept, image file formats, creating user interfaces and many practical examples of processing images using C++ and Java. These practical examples include among other creating image histograms, performing lossless image compression, detecting change in colors, similarity-based image retrieval and others. All practical examples are accompanied with an explanation how to create programs and the obtained results. This SpringerBrief can be very useful for the undergraduate courses on image processing, providing students with the basic tools in image analysis and processing. Practitioners and researchers working in this field will also find this research useful.




MDCT: A Practical Approach


Book Description

This book describes current examination techniques and advanced clinical applications of state-of-the-art multidetector computed tomography (MDCT) scanners. There are contributions from several distinguished radiologists and clinicians. Each chapter is written from a practical perspective, so that radiologists, residents, medical physicists, and radiology technologists can obtain relevant information about MDCT applications.




Radiographic Imaging


Book Description

The textbook covers all aspects of imaging technology, including the use of computers and lasers and the more traditional imaging techniques. The book adopts a practical approach, explaining tests and looking at the application of techniques, and deals with a complex topic in simple and direct language.




Clinical MR Imaging


Book Description

This book offers practical guidelines for performing efficient and cost-effective MRI examinations. By adopting a practical protocol-based approach the work-flow in a MRI unit can be streamlined and optimized. All chapters have been thoroughly reviewed, and new techniques and figures are included. There is a new chapter on MRI of the chest. This book will help beginners to implement the protocols and will update the knowledge of more experienced users.




Computer Vision and Image Processing


Book Description

This two-volume set (CCIS 1567-1568) constitutes the refereed proceedings of the 6h International Conference on Computer Vision and Image Processing, CVIP 2021, held in Rupnagar, India, in December 2021. The 70 full papers and 20 short papers were carefully reviewed and selected from the 260 submissions. The papers present recent research on such topics as biometrics, forensics, content protection, image enhancement/super-resolution/restoration, motion and tracking, image or video retrieval, image, image/video processing for autonomous vehicles, video scene understanding, human-computer interaction, document image analysis, face, iris, emotion, sign language and gesture recognition, 3D image/video processing, action and event detection/recognition, medical image and video analysis, vision-based human GAIT analysis, remote sensing, and more.




Applied Medical Image Processing


Book Description

A widely used, classroom-tested text, Applied Medical Image Processing: A Basic Course delivers an ideal introduction to image processing in medicine, emphasizing the clinical relevance and special requirements of the field. Avoiding excessive mathematical formalisms, the book presents key principles by implementing algorithms from scratch and using simple MATLAB®/Octave scripts with image data and illustrations on an accompanying companion website. Organized as a complete textbook, it provides an overview of the physics of medical image processing and discusses imaging physics, clinical applications of image processing, image formats and data storage, intensity transforms, filtering of images and applications of the Fourier transform, three-dimensional spatial transforms, volume rendering, image registration, tomographic reconstruction and basic machine learning. This Third Edition of the bestseller: Contains a brand-new chapter on the basics of machine learning Devotes more attention to the subject of color space Includes additional examples from radiology, internal medicine, surgery, and radiation therapy Incorporates freely available programs in the public domain (e.g., GIMP, 3DSlicer, and ImageJ) when applicable Beneficial to students of medical physics, biomedical engineering, computer science, applied mathematics, and related fields, as well as medical physicists, radiographers, radiologists, and other professionals, Applied Medical Image Processing: A Basic Course, Third Edition is fully updated and expanded to ensure a perfect blend of theory and practice. Wolfgang Birkfellner studied theoretical physics at, and holds a Ph.D in medical physics from, the University of Vienna, Austria. Currently, he is heading the Digital Image Processing Laboratory at the Center for Biomedical Engineering and Physics at the Medical University of Vienna. He is also a reviewer and editorial board member for major journals in the field, program committee member for international conferences, and principal investigator for several third-party funded research projects. Previously, he served as senior researcher at the University Hospital Basel/Switzerland and associate professor of medical physics at the Center for Biomedical Engineering and Physics of Vienna Medical School.