A Practical Approach to VLSI System on Chip (SoC) Design


Book Description

Now in a thoroughly revised second edition, this practical practitioner guide provides a comprehensive overview of the SoC design process. It explains end-to-end system on chip (SoC) design processes and includes updated coverage of design methodology, the design environment, EDA tool flow, design decisions, choice of design intellectual property (IP) cores, sign-off procedures, and design infrastructure requirements. The second edition provides new information on SOC trends and updated design cases. Coverage also includes critical advanced guidance on the latest UPF-based low power design flow, challenges of deep submicron technologies, and 3D design fundamentals, which will prepare the readers for the challenges of working at the nanotechnology scale. A Practical Approach to VLSI System on Chip (SoC) Design: A Comprehensive Guide, Second Edition provides engineers who aspire to become VLSI designers with all the necessary information and details of EDA tools. It will be a valuable professional reference for those working on VLSI design and verification portfolios in complex SoC designs




System on Chip (SOC) Architecture


Book Description

This book deals with a practical approach to defining a system on a chip (SoC) architecture. It is written by practicing industry experts with cumulative five decades of hands-on experience. The book discusses how the system-level design challenges are addressed at the architecture stage and clearly defines different SoC subsystems and components. The book explains the practical method of determining system subsystems in system architectures. System on Chip (SOC) Architecture: A Practical Approach provides readers with a complete understanding of methods for defining SoC architecture.




System-on-Chip for Real-Time Applications


Book Description

System-on-Chip for Real-Time Applications will be of interest to engineers, both in industry and academia, working in the area of SoC VLSI design and application. It will also be useful to graduate and undergraduate students in electrical and computer engineering and computer science. A selected set of papers from the 2nd International Workshop on Real-Time Applications were used to form the basis of this book. It is organized into the following chapters: -Introduction; -Design Reuse; -Modeling; -Architecture; -Design Techniques; -Memory; -Circuits; -Low Power; -Interconnect and Technology; -MEMS. System-on-Chip for Real-Time Applications contains many signal processing applications and will be of particular interest to those working in that community.




Computer System Design


Book Description

The next generation of computer system designers will be less concerned about details of processors and memories, and more concerned about the elements of a system tailored to particular applications. These designers will have a fundamental knowledge of processors and other elements in the system, but the success of their design will depend on the skills in making system-level tradeoffs that optimize the cost, performance and other attributes to meet application requirements. This book provides a new treatment of computer system design, particularly for System-on-Chip (SOC), which addresses the issues mentioned above. It begins with a global introduction, from the high-level view to the lowest common denominator (the chip itself), then moves on to the three main building blocks of an SOC (processor, memory, and interconnect). Next is an overview of what makes SOC unique (its customization ability and the applications that drive it). The final chapter presents future challenges for system design and SOC possibilities.




System-on-Chip Test Architectures


Book Description

Modern electronics testing has a legacy of more than 40 years. The introduction of new technologies, especially nanometer technologies with 90nm or smaller geometry, has allowed the semiconductor industry to keep pace with the increased performance-capacity demands from consumers. As a result, semiconductor test costs have been growing steadily and typically amount to 40% of today's overall product cost. This book is a comprehensive guide to new VLSI Testing and Design-for-Testability techniques that will allow students, researchers, DFT practitioners, and VLSI designers to master quickly System-on-Chip Test architectures, for test debug and diagnosis of digital, memory, and analog/mixed-signal designs. - Emphasizes VLSI Test principles and Design for Testability architectures, with numerous illustrations/examples. - Most up-to-date coverage available, including Fault Tolerance, Low-Power Testing, Defect and Error Tolerance, Network-on-Chip (NOC) Testing, Software-Based Self-Testing, FPGA Testing, MEMS Testing, and System-In-Package (SIP) Testing, which are not yet available in any testing book. - Covers the entire spectrum of VLSI testing and DFT architectures, from digital and analog, to memory circuits, and fault diagnosis and self-repair from digital to memory circuits. - Discusses future nanotechnology test trends and challenges facing the nanometer design era; promising nanotechnology test techniques, including Quantum-Dots, Cellular Automata, Carbon-Nanotubes, and Hybrid Semiconductor/Nanowire/Molecular Computing. - Practical problems at the end of each chapter for students.




Design of VLSI Systems


Book Description




Engineering the Complex SOC


Book Description

Engineering the Complex SOC The first unified hardware/software guide to processor-centric SOC design Processor-centric approaches enable SOC designers to complete far larger projects in far less time. Engineering the Complex SOCis a comprehensive, example-driven guide to creating designs with configurable, extensible processors. Drawing upon Tensilica’s Xtensa architecture and TIE language, Dr. Chris Rowen systematically illuminates the issues, opportunities, and challenges of processor-centric design. Rowen introduces a radically new design methodology, then covers its essential techniques: processor configuration, extension, hardware/software co-generation, multiple processor partitioning/communication, and more. Coverage includes: Why extensible processors are necessary: shortcomings of current design methods Comparing extensible processors to traditional processors and hardwired logic Extensible processor architecture and mechanisms of processor extensibility Latency, throughput, coordination of parallel functions, hardware interconnect options, management of design complexity, and other issues Multiple-processor SOC architecture for embedded systems Task design from the viewpoints of software andhardware developers Advanced techniques: implementing complex state machines, task-to-task synchronization, power optimization, and more Toward a “sea of processors”: Long-term trends in SOC design and semiconductor technology For all architects, hardware engineers, software designers, and SOC program managers involved with complex SOC design; and for all managers investing in SOC designs, platforms, processors, or expertise. PRENTICE HALL Professional Technical Reference Upper Saddle River, NJ 07458 www.phptr.com




VLSI Circuit Design Methodology Demystified


Book Description

This book was written to arm engineers qualified and knowledgeable in the area of VLSI circuits with the essential knowledge they need to get into this exciting field and to help those already in it achieve a higher level of proficiency. Few people truly understand how a large chip is developed, but an understanding of the whole process is necessary to appreciate the importance of each part of it and to understand the process from concept to silicon. It will teach readers how to become better engineers through a practical approach of diagnosing and attacking real-world problems.




Advanced Chip Design


Book Description

The book is intended for digital and system design engineers with emphasis on design and system architecture. The book is broadly divided into two sections - chapters 1 through 10, focusing on the digital design aspects and chapters 11 through 20, focusing on the system aspects of chip design. It comes with real-world examples in Verilog and introduction to SystemVerilog Assertions (SVA).




Low Power Methodology Manual


Book Description

This book provides a practical guide for engineers doing low power System-on-Chip (SoC) designs. It covers various aspects of low power design from architectural issues and design techniques to circuit design of power gating switches. In addition to providing a theoretical basis for these techniques, the book addresses the practical issues of implementing them in today's designs with today's tools.