A Primer in Probability, Second Edition


Book Description

Somewhat revised/expanded new edition of a problem-oriented introductory undergraduate text, the first edition of which appeared about a decade ago. The author writes with courteous clarity, and imposes only modest demands upon the mathematical skills of her readers. Problems at the end of each of t




A Primer in Probability


Book Description

Somewhat revised/expanded new edition of a problem-oriented introductory undergraduate text, the first edition of which appeared about a decade ago. The author writes with courteous clarity, and imposes only modest demands upon the mathematical skills of her readers. Problems at the end of each of t




Basic Probability Theory


Book Description

This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.




A Natural Introduction to Probability Theory


Book Description

Compactly written, but nevertheless very readable, appealing to intuition, this introduction to probability theory is an excellent textbook for a one-semester course for undergraduates in any direction that uses probabilistic ideas. Technical machinery is only introduced when necessary. The route is rigorous but does not use measure theory. The text is illustrated with many original and surprising examples and problems taken from classical applications like gambling, geometry or graph theory, as well as from applications in biology, medicine, social sciences, sports, and coding theory. Only first-year calculus is required.




Elementary Probability


Book Description

Now available in a fully revised and updated second edition, this well established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands. Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous worked examples and exercises to help build the important skills necessary for problem solving.




Probability and Measure Theory


Book Description

Probability and Measure Theory, Second Edition, is a text for a graduate-level course in probability that includes essential background topics in analysis. It provides extensive coverage of conditional probability and expectation, strong laws of large numbers, martingale theory, the central limit theorem, ergodic theory, and Brownian motion. Clear, readable style Solutions to many problems presented in text Solutions manual for instructors Material new to the second edition on ergodic theory, Brownian motion, and convergence theorems used in statistics No knowledge of general topology required, just basic analysis and metric spaces Efficient organization




Handbook of Probability


Book Description

"This is a valuable reference guide for readers interested in gaining a basic understanding of probability theory or its applications in problem solving in the other disciplines." —CHOICE Providing cutting-edge perspectives and real-world insights into the greater utility of probability and its applications, the Handbook of Probability offers an equal balance of theory and direct applications in a non-technical, yet comprehensive, format. Editor Tamás Rudas and the internationally-known contributors present the material in a manner so that researchers of various backgrounds can use the reference either as a primer for understanding basic probability theory or as a more advanced research tool for specific projects requiring a deeper understanding. The wide-ranging applications of probability presented make it useful for scholars who need to make interdisciplinary connections in their work. Key Features Contains contributions from the international who's-who of probability across several disciplines Offers an equal balance of theory and applications Explains the most important concepts of probability theory in a non-technical yet comprehensive way Provides in-depth examples of recent applications in the social and behavioral sciences as well as education, business, and law Intended Audience This Handbook makes an ideal library purchase. In addition, this volume should also be of interest to individual scholars in the social and behavioral sciences.




A Primer of Ecological Statistics


Book Description

A Primer of Ecological Statistics, Second Edition explains fundamental material in probability theory, experimental design, and parameter estimation for ecologists and environmental scientists. The book emphasizes a general introduction to probability theory and provides a detailed discussion of specific designs and analyses that are typically encountered in ecology and environmental science. Appropriate for use as either a stand-alone or supplementary text for upper-division undergraduate or graduate courses in ecological and environmental statistics, ecology, environmental science, environmental studies, or experimental design, the Primer also serves as a resource for environmental professionals who need to use and interpret statistics daily but have little or no formal training in the subject. The book is divided into four parts. Part I discusses the fundamentals of probability and statistical thinking. It introduces the logic and language of probability (Chapter 1), explains common statistical distributions used in ecology (Chapter 2) and important measures of central tendency and spread (Chapter 3), explains P-values, hypothesis testing, and statistical errors (Chapter 4), and introduces frequentist, Bayesian, and Monte Carlo methods of analysis (Chapter 5). Part II discusses how to successfully design and execute field experiments and sampling studies. Topics include design strategies (Chapter 6), a 'bestiary' of experimental designs (Chapter 7), and transformations and data management (Chapter 8). Part III discusses specific analyses, and covers the material that is the main core of most statistics texts. Topics include regression (Chapter 9), analysis of variance (Chapter 10), categorical data analysis (Chapter 11), and multivariate analysis (Chapter 12). Part IV—new to this edition—discusses two central topics in estimating important ecological metrics. Topics include quantification of biological diversity (Chapter 13) and estimating occupancy, detection probability, and population sizes from marked and unmarked populations (Chapter 14). The book includes a comprehensive glossary, a mathematical appendix on matrix algebra, and extensively annotated tables and figures. Footnotes introduce advanced and ancillary material: some are purely historical, others cover mathematical/statistical proofs or details, and still others address current topics in the ecological literature. Data files and code used for some of the examples, as well as errata, are available online.




Statistical Inference


Book Description

This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.