A Primer of Real Functions: Fourth Edition


Book Description

This is a revised, updated, and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic Carus Monograph covered sets, metric spaces, continuous functions, and differentiable functions. The fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications. The book retains the informal chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is, thus, suitable either for self-study or for supplemental reading in a course on advanced calculus or real analysis. Not intended as a systematic treatise, this book has more the character of a sequence of lectures on a variety of interesting topics connected with real functions. Many of these topics are not commonly encountered in undergraduate textbooks: e.g., the existence of continuous everywhere-oscillating functions (via the Baire category theorem); the universal chord theorem; two functions having equal derivatives, yet not differing by a constant; and application of Stieltjes integration to the speed of convergence of infinite series. This book recaptures the sense of wonder that was associated with the subject in its early days. It is a must for mathematics libraries.




A Primer of Real Analytic Functions


Book Description

Key topics in the theory of real analytic functions are covered in this text,and are rather difficult to pry out of the mathematics literature.; This expanded and updated 2nd ed. will be published out of Boston in Birkhäuser Adavaned Texts series.; Many historical remarks, examples, references and an excellent index should encourage the reader study this valuable and exciting theory.; Superior advanced textbook or monograph for a graduate course or seminars on real analytic functions.; New to the second edition a revised and comprehensive treatment of the Faá de Bruno formula, topologies on the space of real analytic functions,; alternative characterizations of real analytic functions, surjectivity of partial differential operators, And the Weierstrass preparation theorem.




Real Analysis and Foundations, Fourth Edition


Book Description

A Readable yet Rigorous Approach to an Essential Part of Mathematical Thinking Back by popular demand, Real Analysis and Foundations, Third Edition bridges the gap between classic theoretical texts and less rigorous ones, providing a smooth transition from logic and proofs to real analysis. Along with the basic material, the text covers Riemann-Stieltjes integrals, Fourier analysis, metric spaces and applications, and differential equations. New to the Third Edition Offering a more streamlined presentation, this edition moves elementary number systems and set theory and logic to appendices and removes the material on wavelet theory, measure theory, differential forms, and the method of characteristics. It also adds a chapter on normed linear spaces and includes more examples and varying levels of exercises. Extensive Examples and Thorough Explanations Cultivate an In-Depth Understanding This best-selling book continues to give students a solid foundation in mathematical analysis and its applications. It prepares them for further exploration of measure theory, functional analysis, harmonic analysis, and beyond.




Invitation to Complex Analysis


Book Description

Ideal for a first course in complex analysis, this book can be used either as a classroom text or for independent study. Written at a level accessible to advanced undergraduates and beginning graduate students, the book is suitable for readers acquainted with advanced calculus or introductory real analysis. The treatment goes beyond the standard material of power series, Cauchy's theorem, residues, conformal mapping, and harmonic functions by including accessible discussions of intriguing topics that are uncommon in a book at this level. The flexibility afforded by the supplementary topics and applications makes the book adaptable either to a short, one-term course or to a comprehensive, full-year course. Detailed solutions of the exercises both serve as models for students and facilitate independent study. Supplementary exercises, not solved in the book, provide an additional teaching tool. This second edition has been painstakingly revised by the author's son, himself an award-winning mathematical expositor.




Computable Foundations for Economics


Book Description

Computable Foundations for Economics is a unified collection of essays, some of which are published here for the first time and all of which have been updated for this book, on an approach to economic theory from the point of view of algorithmic mathematics. By algorithmic mathematics the author means computability theory and constructive mathematics. This is in contrast to orthodox mathematical economics and game theory, which are formalised with the mathematics of real analysis, underpinned by what is called the ZFC formalism, i.e., set theory with the axiom of choice. This reliance on ordinary real analysis and the ZFC system makes economic theory in its current mathematical mode completely non-algorithmic, which means it is numerically meaningless. The book provides a systematic attempt to dissect and expose the non-algorithmic content of orthodox mathematical economics and game theory and suggests a reformalization on the basis of a strictly rigorous algorithmic mathematics. This removes the current schizophrenia in mathematical economics and game theory, where theory is entirely divorced from algorithmic applicability – for experimental and computational exercises. The chapters demonstrate the uncomputability and non-constructivity of core areas of general equilibrium theory, game theory and recursive macroeconomics. The book also provides a fresh look at the kind of behavioural economics that lies behind Herbert Simon’s work, and resurrects a role for the noble classical traditions of induction and verification, viewed and formalised, now, algorithmically. It will therefore be of particular interest to postgraduate students and researchers in algorithmic economics, game theory and classical behavioural economics.




Statistical Independence in Probability, Analysis, and Number Theory


Book Description

Professor Kac's monograph is designed to illustrate how simple observations can be made the starting point of rich and fruitful theories and how the same theme recurs in seemingly unrelated disciplines. An elementary but thorough discussion of the game of "heads or tails," including the normal law and the laws of large numbers, is presented in a setting in which a variety of purely analytic results appear natural and inevitable. The chapter "Primes Play a Game of Chance" uses the same setting in dealing with problems of the distribution of values of arithmetic functions. The final chapter "From Kinetic Theory to Continued Fractions" deals with a spectacular application of the ergodic theorems to continued fractions. Mark Kac conveyed his infectious enthusiasm for mathematics and its applications in his lectures, papers, and books. Two of his papers won Chauvenet awards for expository excellence.




An Introduction to Modern Analysis


Book Description

Examining the basic principles in real analysis and their applications, this text provides a self-contained resource for graduate and advanced undergraduate courses. It contains independent chapters aimed at various fields of application, enhanced by highly advanced graphics and results explained and supplemented with practical and theoretical exercises. The presentation of the book is meant to provide natural connections to classical fields of applications such as Fourier analysis or statistics. However, the book also covers modern areas of research, including new and seminal results in the area of functional analysis.




Noncommutative Rings


Book Description

A cross-section of ideas, techniques and results that give the reader an unparalleled introductory overview of the subject.




Irrational Numbers


Book Description

In this monograph, Ivan Niven provides a masterful exposition of some central results on irrational, transcendental, and normal numbers. He gives a complete treatment by elementary methods of the irrationality of the exponential, logarithmic, and trigonometric functions with rational arguments. The approximation of irrational numbers by rationals, up to such results as the best possible approximation of Hurwitz, is also given with elementary technique. The last third of the monograph treats normal and transcendental numbers, including the Lindemann theorem, and the Gelfond-Schneider theorem. The book is wholly self-contained. The results needed from analysis and algebra are central. Well-known theorems, and complete references to standard works are given to help the beginner. The chapters are for the most part independent. There are notes at the end of each chapter citing the main sources used by the author and suggesting further reading.




Knot Theory


Book Description

This book uses only linear algebra and basic group theory to study the properties of knots.