A Primer on Fourier Analysis for the Geosciences


Book Description

An intuitive introduction to basic Fourier theory, with numerous practical applications from the geosciences and worked examples in R.




A Primer on Radial Basis Functions with Applications to the Geosciences


Book Description

Adapted from a series of lectures given by the authors, this monograph focuses on radial basis functions (RBFs), a powerful numerical methodology for solving PDEs to high accuracy in any number of dimensions. This method applies to problems across a wide range of PDEs arising in fluid mechanics, wave motions, astro- and geosciences, mathematical biology, and other areas and has lately been shown to compete successfully against the very best previous approaches on some large benchmark problems. Using examples and heuristic explanations to create a practical and intuitive perspective, the authors address how, when, and why RBF-based methods work. The authors trace the algorithmic evolution of RBFs, starting with brief introductions to finite difference (FD) and pseudospectral (PS) methods and following a logical progression to global RBFs and then to RBF-generated FD (RBF-FD) methods. The RBF-FD method, conceived in 2000, has proven to be a leading candidate for numerical simulations in an increasingly wide range of applications, including seismic exploration for oil and gas, weather and climate modeling, and electromagnetics, among others. This is the first survey in book format of the RBF-FD methodology and is suitable as the text for a one-semester first-year graduate class.




Encyclopedia of Mathematical Geosciences


Book Description

The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive.




Tectono-Magmatism, Metallogenesis, and Sedimentation at Convergent Margins


Book Description

Convergent plate margins are important places for material and energy recycling of the Earth, in particular major sites for continental growth, reworking, and recycling. They exhibit as narrow belt structure in the rigid outer layer of the Earth, corresponding to subduction zones at lithospheric mantle depths and orogenic belts at crustal depths. The type, geometry, and thermal structure of subduction zones have critical impacts on subduction processes and nature of products, resulting in a variety of magmatic rocks and ore deposits at convergent margins. Identification and classification of the physical structure and chemical variation at convergent margins as well as confirming their correlation with specific subduction types and stages are of pivotality to understand the spatiotemporal interaction between asthenosphere and lithosphere in orogenic belts. For places where magmatic arcs get partially or entirely destroyed by surface and/or subduction erosion, adjacent sedimentary rocks are ideal geological records for paleotectonic reconstruction.




Wavelets and Fractals in Earth System Sciences


Book Description

The subject of wavelet analysis and fractal analysis is fast developing and has drawn a great deal of attention in varied disciplines of science and engineering. Over the past couple of decades, wavelets, multiresolution, and multifractal analyses have been formalized into a thorough mathematical framework and have found a variety of applications with significant impact in several branches of earth system sciences. Wavelets and Fractals in Earth System Sciences highlights the role of advanced data processing techniques in present-day research in various fields of earth system sciences. The book consists of ten chapters, providing a well-balanced blend of information about the role of wavelets, fractals, and multifractal analyses with the latest examples of their application in various research fields. By combining basics with advanced material, this book introduces concepts as needed and serves as an excellent introductory material and also as an advanced reference text for students and researchers.




Exploring Spatial Scale in Geography


Book Description

Exploring Spatial Scale in Geography provides a conceptual and practical guide to issues of spatial scale in all areas of the physical and social sciences. Scale is at the heart of geography and other spatial sciences. Whether dealing with geomorphological processes, population movements or meteorology, a consideration of spatial scale is vital. Exploring Spatial Scale in Geography takes a practical approach with a core focus on real world problems and potential solutions. Links are made to appropriate software environments with an associated website providing access to guidance material which outlines how particular problems can be approached using popular GIS and spatial data analysis software. This book offers alternative definitions of spatial scale, presents approaches for exploring spatial scale and makes use of a wide variety of case studies in the physical and social sciences to demonstrate key concepts, making it a key resource for anyone who makes use of geographical information.




Dictionary of Mathematical Geosciences


Book Description

This dictionary includes a number of mathematical, statistical and computing terms and their definitions to assist geoscientists and provide guidance on the methods and terminology encountered in the literature. Each technical term used in the explanations can be found in the dictionary which also includes explanations of basics, such as trigonometric functions and logarithms. There are also citations from the relevant literature to show the term’s first use in mathematics, statistics, etc. and its subsequent usage in geosciences.




Approximation Theory and Algorithms for Data Analysis


Book Description

This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data analysis plays an important role. The following topics are covered: * least-squares approximation and regularization methods * interpolation by algebraic and trigonometric polynomials * basic results on best approximations * Euclidean approximation * Chebyshev approximation * asymptotic concepts: error estimates and convergence rates * signal approximation by Fourier and wavelet methods * kernel-based multivariate approximation * approximation methods in computerized tomography Providing numerous supporting examples, graphical illustrations, and carefully selected exercises, this textbook is suitable for introductory courses, seminars, and distance learning programs on approximation for undergraduate students.







Tensor Numerical Methods in Quantum Chemistry


Book Description

The conventional numerical methods when applied to multidimensional problems suffer from the so-called "curse of dimensionality", that cannot be eliminated by using parallel architectures and high performance computing. The novel tensor numerical methods are based on a "smart" rank-structured tensor representation of the multivariate functions and operators discretized on Cartesian grids thus reducing solution of the multidimensional integral-differential equations to 1D calculations. We explain basic tensor formats and algorithms and show how the orthogonal Tucker tensor decomposition originating from chemometrics made a revolution in numerical analysis, relying on rigorous results from approximation theory. Benefits of tensor approach are demonstrated in ab-initio electronic structure calculations. Computation of the 3D convolution integrals for functions with multiple singularities is replaced by a sequence of 1D operations, thus enabling accurate MATLAB calculations on a laptop using 3D uniform tensor grids of the size up to 1015. Fast tensor-based Hartree-Fock solver, incorporating the grid-based low-rank factorization of the two-electron integrals, serves as a prerequisite for economical calculation of the excitation energies of molecules. Tensor approach suggests efficient grid-based numerical treatment of the long-range electrostatic potentials on large 3D finite lattices with defects.The novel range-separated tensor format applies to interaction potentials of multi-particle systems of general type opening the new prospects for tensor methods in scientific computing. This research monograph presenting the modern tensor techniques applied to problems in quantum chemistry may be interesting for a wide audience of students and scientists working in computational chemistry, material science and scientific computing.