Problem Based Journey From Elementary Number Theory To An Introduction To Matrix Theory, A: The President Problems


Book Description

The book is based on lecture notes of a course 'from elementary number theory to an introduction to matrix theory' given at the Technion to gifted high school students. It is problem based, and covers topics in undergraduate mathematics that can be introduced in high school through solving challenging problems. These topics include Number theory, Set Theory, Group Theory, Matrix Theory, and applications to cryptography and search engines.




A Problem Based Journey from Elementary Number Theory to an Introduction to Matrix Theory


Book Description

The book is based on lecture notes of a course 'from elementary number theory to an introduction to matrix theory' given at the Technion to gifted high school students. It is problem based, and covers topics in undergraduate mathematics that can be introduced in high school through solving challenging problems. These topics include Number theory, Set Theory, Group Theory, Matrix Theory, and applications to cryptography and search engines.




Third Symposium Proceedings. New Ways of Teaching and Learning


Book Description

This volume contains the papers presented at the Third International Symposium on New Ways of Teaching & Learning held from August 6-10, 2024, at the Aemilia Hotel, Bologna, Italy. The Conference was organized by The Mathematics Education for the Future Project - an international educational project founded in 1986 and dedicated to innovation in mathematics, statistics, science and computer education world wide.







Introduction to Matrix Theory


Book Description

This book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in Mathematics. Using elementary row operations and Gram-Schmidt orthogonalization as basic tools the text develops characterization of equivalence and similarity, and various factorizations such as rank factorization, OR-factorization, Schurtriangularization, Diagonalization of normal matrices, Jordan decomposition, singular value decomposition, and polar decomposition. Along with Gauss-Jordan elimination for linear systems, it also discusses best approximations and least-squares solutions. The book includes norms on matrices as a means to deal with iterative solutions of linear systems and exponential of a matrix. The topics in the book are dealt with in a lively manner. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses.




Not Always Buried Deep


Book Description

Number theory is one of the few areas of mathematics where problems of substantial interest can be fully described to someone with minimal mathematical background. Solving such problems sometimes requires difficult and deep methods. But this is not a universal phenomenon; many engaging problems can be successfully attacked with little more than one's mathematical bare hands. In this case one says that the problem can be solved in an elementary way. Such elementary methods and the problems to which they apply are the subject of this book. Not Always Buried Deep is designed to be read and enjoyed by those who wish to explore elementary methods in modern number theory. The heart of the book is a thorough introduction to elementary prime number theory, including Dirichlet's theorem on primes in arithmetic progressions, the Brun sieve, and the Erdos-Selberg proof of the prime number theorem. Rather than trying to present a comprehensive treatise, Pollack focuses on topics that are particularly attractive and accessible. Other topics covered include Gauss's theory of cyclotomy and its applications to rational reciprocity laws, Hilbert's solution to Waring's problem, and modern work on perfect numbers. The nature of the material means that little is required in terms of prerequisites: The reader is expected to have prior familiarity with number theory at the level of an undergraduate course and a first course in modern algebra (covering groups, rings, and fields). The exposition is complemented by over 200 exercises and 400 references.




Linear Algebra Done Right


Book Description

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.




Problems in Algebraic Number Theory


Book Description

The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved




An Introduction to Random Matrices


Book Description

A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.




Algebra: A Very Short Introduction


Book Description

Algebra marked the beginning of modern mathematics, moving it beyond arithmetic, which involves calculations featuring given numbers, to problems where some quantities are unknown. Now, it stands as a pillar of mathematics, underpinning the quantitative sciences, both social and physical. This Very Short Introduction explains algebra from scratch. Over the course of ten logical chapters, Higgins offers a step by step approach for readers keen on developing their understanding of algebra. Using theory and example, he renews the reader's aquaintance with school mathematics, before taking them progressively further and deeper into the subject. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.