Atmospheric Influence on Fatigue Crack Propagation in Titanium Alloys at Elevated Temperature


Book Description

The fatigue crack propagation behavior of a Ti-6Al-4V alloy has been investigated at room temperature and at 300°C. Tests were run in air, high vacuum, and some other environments with controlled partial pressure of water vapor and oxygen. The enhancement of the fatigue crack growth rates observed in air in comparison to high vacuum, considered as an inert environment, is clearly attributed to the presence of water vapor. Tests in a controlled environment demonstrate that very low partial pressure can accelerate crack propagation. On the basis of previous studies on Al alloys and steels, two controlling mechanisms are considered and discussed, namely, a propagation-assisted water vapor adsorption and a hydrogen-assisted propagation.













The Effect of O2, H2o, and N2 on the Fatigue Crack Growth Behavior of an Alpha + Beta Titanium Alloy at 24 C and 177 C


Book Description

To study the effects of atmospheric species on the fatigue crack growth behavior of an a+B titanium alloy (Ti 6-2-2-2-2) at room temperature and 177 C, fatigue tests were performed in laboratory air, ultrahigh vacuum, and high purity water vapor, oxygen, nitrogen and helium at various partial pressures. Accelerated fatigue crack growth rates in laboratory air compared to ultrahigh vacuum are linked to the damaging effects of both water vapor and oxygen. Observations of the fatigue crack growth behavior in ultrahigh purity environments, along with surface film analysis using X-ray photoelectron spectroscopy (XPS), suggest that multiple crack-tip processes govern the damaging effects of air. Three possible mechanisms are proposed: 1) at low pressure (less than 10(exp -1) Pa), accelerated da/dN is likely due to monolayer adsorption on crack-tip surfaces presumably resulting in decreased bond strengths at the fatigue crack tip, 2) for pressures greater than 10(exp -1) Pa, accelerated da/dN in oxygen may result from oxidation at the crack tip limiting reversible slip, and 3) in water vapor, absorption of atomic hydrogen at the reactive crack tip resulting in process zone embrittlement.Smith, Stephen W. and Piascik, Robert S.Langley Research CenterFATIGUE TESTS; FATIGUE (MATERIALS); CRACK PROPAGATION; TITANIUM ALLOYS; EMBRITTLEMENT; ATMOSPHERIC COMPOSITION; X RAY SPECTROSCOPY; WATER VAPOR; ULTRAHIGH VACUUM; PHOTOELECTRON SPECTROSCOPY




Fatigue Crack Growth Characteristics of Thin Sheet Titanium Alloy Ti 6-2-2-2-2


Book Description

Fatigue crack growth rates of Ti 6-2-2-2-2 as a function of stress ratio, temperature (24 or 177 C), tensile orientation and environment (laboratory air or ultrahigh vacuum) are presented. Fatigue crack growth rates of Ti 6-2-2-2-2 are also compared with two more widely used titanium alloys (Timetal 21S and Ti 6Al-4V). The fatigue crack growth rate (da/dN) of Ti 6-2-2-2-2 in laboratory air is dependent upon stress ratio (R), particularly in the near-threshold and lower-Paris regimes. For low R (less than approximately 0.5), da/dN is influenced by crack closure behavior. At higher R (> 0.5), a maximum stress-intensity factor (K(sub max)) dependence is observed. Fatigue crack growth behavior is affected by test temperature between 24 and 177 C. For moderate to high applied cyclic-stress-intensity factors (delta-K), the slope of the log da/dN versus log delta-K curve is lower in 177 C laboratory air than 24 C laboratory air. The difference in slope results in lower values of da/dN for exposure to 177 C laboratory air compared to room temperature laboratory air. The onset of this temperature effect is dependent upon the applied R. This temperature effect has not been observed in ultrahigh vacuum. Specimen orientation has been shown to affect the slope of the log da/dN versus log delta-K curve in the Paris regime.Smith, Stephen W. and Piascik, Robert S.Langley Research CenterCRACK PROPAGATION; FATIGUE (MATERIALS); TITANIUM ALLOYS; CORROSION; STRESS RATIO; TEMPERATURE EFFECTS; CRACK CLOSURE; STRESS INTENSITY FACTORS







Fatigue Crack Propagation in Metastable Titanium Alloys


Book Description

The fatigue crack growth rate tests of water quenched Corona-5 (Ti-4.5Al-1.5Cr-5Mo) and Ti-6Al-4V alloy were conducted in air at room temperature. The effect of the presence of the metastable retained beta phase on the fatigue crack growth rate was examined in this research. The specimens were heat treated and water quenched to have unstable beta phase that could be transformed to martensite during the fatigue crack growth testing. As quenched specimens were compared with specimens in the mill annealed condition. The fatigue crack growth rates of all the specimens were in the same order of magnitude regardless of the heat treatment. From this research it was shown that in Corona-5 and Ti-6Al-4V alloys the fatigue crack growth rates were not affected by the strain induced martensitic transformation.