Drills


Book Description

In a presentation that balances theory and practice, Drills: Science and Technology of Advanced Operations details the basic concepts, terminology, and essentials of drilling. The book addresses important issues in drilling operations, and provides help with the design of such operations. It debunks many old notions and beliefs while introducing sc




Mechanical Properties of Ceramics and Composites


Book Description

This book presents a comprehensive review, evaluation, and summary of the dependence of mechanical properties on grain and particle parameters of monolithic ceramics and ceramic composites. Emphasizing the critical link between fabrication and ceramic performance, the book covers the grain dependence of monolithic properties and the dependence of c




Comprehensive Hard Materials


Book Description

Comprehensive Hard Materials, Three Volume Set deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued research and development of such materials is critical to meet the technological challenges of the future. Users of this work can improve their knowledge of basic principles and gain a better understanding of process/structure/property relationships. With the convergence of nanotechnology, coating techniques, and functionally graded materials to the cognitive science of cemented carbides, cermets, advanced ceramics, super-hard materials and composites, it is evident that the full potential of this class of materials is far from exhausted. This work unites these important areas of research and will provide useful insights to users through its extensive cross-referencing and thematic presentation. To link academic to industrial usage of hard materials and vice versa, this work deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds.




Liquid Phase Sintering


Book Description

In the past few years there has been rapid growth in the activities involving particulate materials because of recognized advantages in manufacturing. This growth is attributed to several factors; i) an increased concern over energy utilization, ii) a desire to better control microstructure in engineermg materials, iii) the need for 1mproved material economy, iv) societal and economic pressures for higher productivity and quality, v) requirements for unique property combinations for high performance applica tions, and vi) a desire for net shape forming. Accordingly, liquid phase sintering has received increased attention as part of the growth in particulate materials processing. As a consequence, the commercial applications for liquid phase sintering are expanding rapidly. This active and expanding interest is not well served by available texts. For this reason I felt it was appropriate to write this book on liquid phase sintering. The technology of liquid phase sintering IS quite old and has been in use in the ceramics industry for many centuries. However, the general perception among materials and manufacturing engineers is that liquid phase sintering is still a novel technique. I believe the diverse technological appli cations outlined in this book will dispel I such impressions. Liquid phase. sintering has great value in fabricating several unique materials to near net shapes and will continue to expand in applications as the fundamental attrib utes are better appreciated. I am personally involved with several uses for liquid phase sintering.




Experimental Techniques in Mineral and Rock Physics


Book Description

Knowledge of the relation between sonic velocity in sediments and rock lithology is one of the keys to interpreting data from seismic sections or from acoustic logs of sedimentary sequences. Reliable correlations of rock velocity with other petrophysical parameters, such as porosity or density, are essential for calculating impedance models for synthetic seismic sections (BIDDLE et al. , 1992; CAMPBELL and STAFLEU, 1992) or identifying the origin of reflectivity on seismic lines (SELLAMI et al. , 1990; CHRISTENSEN and SZYMANSKI, 1991). Velocity is thus an important parameter for correlating lithological with geophysical data. Recent studies have increased our understanding of elastic rock properties in siliciclastic or shaly sediments. The causes for variations in velocity have been investigated for siliciclastic rocks (VERNIK and NUR, 1992), mixed carbonate siliciclastic sediments (CHRISTENSEN and SZYMANSKI, 1991), synthetic sand-clay mixtures (MARION et aI. , 1992) or claystones (JAPSEN, 1993). The concepts derived from these studies are however only partly applicable in pure carbonates. Carbon ates do not have large compositional variations that are, as is the case in the other sedimentary rocks, responsible for velocity contrasts. Pure carbonates are character ized by the lack of any clay or siliciclastic content, but are mostly produced and deposited on the top or on the slope of isolated or detached carbonate platforms, that have no hinterland as a source of terrigeneous material (WILSON, 1975; EBERLI, 1991).




Material Forming


Book Description

These ESAFORM 2024 conference proceedings cover a wide range of topics: Additive manufacturing; Composites forming processes; Extrusion and drawing; Forging and rolling; Formability of metallic materials; Friction and wear in metal forming; Incremental and sheet metal forming; Innovative joining by forming technologies; Optimization and inverse analysis in forming; Machining, Cutting and severe plastic deformation processes; Material behavior modelling; New and advanced numerical strategies for material forming; Non-conventional processes; Polymer processing and thermomechanical properties; Sustainability on material forming. Keywords: WAAM Technology, Fused deposition Modeling (FDM), Fiber Composite Printers, Ultrasonic Powder Atomization, Finite Element Modeling (FEM), Laser Powder Bed Fusion (L-PBF), Rapid Prototyping in Additive Manufacturing, Directed Energy Deposition (DED), GTAW Droplet Deposition, Deep Learning, Thermoplastic Pultrusion, Textile Reinforcements, Thermoforming Simulation, New Sustainable Materials, Non-Crimp Fabrics, CFRP Scraps, PEEK Composites, Thermoplastic Sheets, Flax/PP Composites.




Science of Hard Materials


Book Description

This volume contains the proceedings of the first International Conference on the Science of Hard Materials held in Moran, Wyoming, Aug. 23-28, 1981. The objective of the conference was to review and advance the state of knowledge of the basic physical and chemical properties of hard materials and show how these properties influence performance in a variety of applications. To this end, the 49 con tributed papers and the four keynote papers by Prof. Fischmeister and Drs. Hintermann, Exner and Almond, present an excellent overview of the state of the art in the "science" of hard materials. The contents of these proceedings also reflect the fact that hard metal technology is now well matured and several aspects of the behavior of these materials are well understood and firmly established. Structure-property relationships in this class of materials are currently well known. Pitfalls in some of the traditional test methods have been recognized and new test methods are being developed which discriminate between intrinsic material properties and flaw content and distribution. Application of fracture mechanics, al though a late corner to the hard materials area (as compared to other structural materials), is rapidly gaining acceptance and new fracture toughness test methods are being developed. Application of modern analysis and analytical techniques to these materials has begun and entirely new and unexpected information has been obtained. For a variety of reasons, "hard metals" have dominated the research and development scene of "hard materials".




Cemented Carbides


Book Description

Cemented Carbides describes all aspects related to the fabrication and examination of cemented carbides, starting from the production of raw materials and ending with final operations of surface finishing and coating. Basic phase diagrams of WC-based cemented carbides are presented and analyzed. Technological processes and equipment employed on different stages of the cemented carbide manufacture, including milling, granulation, pressing, sintering, surface finishing and deposing wear-resistant coatings are described, as well as modern techniques and instruments employed for controlling the microstructure and properties of cemented carbide. - Describes all aspects related to the fabrication and examination of cemented carbides, starting from the production of raw materials and ending with final operations of surface finishing and coating - Fills a gap in our current offerings surrounding the topic - Written by one of the top experts in the field, a former Russian scientist, allowing readers to tap into that country's wealth of knowledge on this topic




Damage and Fracture of Heterogeneous Materials


Book Description

This work examines problems, particularly in mining and civil engineering, related to the destruction of heterogenous materials. It details the physical mechanisms of destruction, methods of damage and fracture modelling, and the application of models to the improvement of drilling efficiency.