A Risk Reduction Strategy for Human Exploration of Space


Book Description

Extending the spatial and temporal boundaries of human space flight is an important goal for the nation and for the National Aeronautics and Space Administration (NASA). However, human space flight remains an endeavor with substantial risks, and these risks must be identified, managed, and mitigated appropriately to achieve the nation's goals in space. The Bioastronautics Roadmap (BR) is the result of extensive, commendable efforts on the part of NASA to prioritize research efforts to meet these challenges. In 2003, NASA asked the Institute of Medicine (IOM), in collaboration with the Division on Engineering and Physical Sciences of the National Academies, to conduct a review of the BR. Specifically, NASA asked the committee to (1) conduct a comprehensive assessment and report of the strengths and weaknesses of the content and processes of the Bioastronautics Roadmap as applied to the missions described in the President's exploration initiative and (2) identify the unique challenges for accomplishing its goals and objectives. In September 2004, the committee released its preliminary report to NASA entitled Preliminary Considerations Regarding NASA's Bioastronautics Critical Path Roadmap. That document presented the committee's preliminary conclusions about the strengths and weaknesses of the April 2004 version of the BR. This report, A Risk Reductions Strategy for Human Exploration of Space, builds on those preliminary conclusions and provides recommendations to NASA about how to address the issues identified by the committee.




A Risk Reduction Strategy for Human Exploration of Space


Book Description

Extending the spatial and temporal boundaries of human space flight is an important goal for the nation and for the National Aeronautics and Space Administration (NASA). However, human space flight remains an endeavor with substantial risks, and these risks must be identified, managed, and mitigated appropriately to achieve the nation's goals in space. The Bioastronautics Roadmap (BR) is the result of extensive, commendable efforts on the part of NASA to prioritize research efforts to meet these challenges. In 2003, NASA asked the Institute of Medicine (IOM), in collaboration with the Division on Engineering and Physical Sciences of the National Academies, to conduct a review of the BR. Specifically, NASA asked the committee to (1) conduct a comprehensive assessment and report of the strengths and weaknesses of the content and processes of the Bioastronautics Roadmap as applied to the missions described in the President's exploration initiative and (2) identify the unique challenges for accomplishing its goals and objectives. In September 2004, the committee released its preliminary report to NASA entitled Preliminary Considerations Regarding NASA's Bioastronautics Critical Path Roadmap. That document presented the committee's preliminary conclusions about the strengths and weaknesses of the April 2004 version of the BR. This report, A Risk Reductions Strategy for Human Exploration of Space, builds on those preliminary conclusions and provides recommendations to NASA about how to address the issues identified by the committee.













Bioastronautics Roadmap


Book Description

The Bioastronautics Critical Path Roadmap is the framework used to identify and assess the risks to crews exposed to the hazardous environments of space. It guides the implementation of research strategies to prevent or reduce those risks. Although the BCPR identifies steps that must be taken to reduce the risks to health and performance that are associated with human space flight, the BCPR is not a "critical path" analysis in the strict engineering sense. The BCPR will evolve to accommodate new information and technology development and will enable NASA to conduct a formal critical path analysis in the future. As a management tool, the BCPR provides information for making informed decisions about research priorities and resource allocation. The outcome-driven nature of the BCPR makes it amenable for assessing the focus, progress and success of the Bioastronautics research and technology program. The BCPR is also a tool for communicating program priorities and progress to the research community and NASA management. Johnson Space Center







NASA Human Spaceflight Astronaut Health Research for Exploration and Manned Mars Missions, Risk Report WSN-03, Intervertebral Disc Damage, Altered Immune Response, Cardiac Rhythm, Osteoporosis


Book Description

This series of reports deals with ongoing research by NASA into a risk reduction strategy for human space exploration and planned manned missions to Mars. Each report deals with a unique aspect of the human research needed to pursue long-duration missions. Many of the reports contain exclusive details about medical events impacting astronauts and cosmonauts on earlier flights, including Mir, Space Shuttle, and ISS Space Station missions. Each risk Evidence Report contains a narrative discussion of the risk and its supporting evidence. All cited publicly-available references are listed at the end of the report. In addition, data that are significant or pivotal are summarized in text, tables, and charts in sufficient detail to allow the reader to critique the data and draw conclusions. The authors also indicate whether the data are from human, animal, or tissue, cellular, or molecular studies. The reports discuss evidence from both spaceflight (including biomedical research, Medical Requirements Integration Document [MRID] data, and operational performance or clinical observations) and ground (including space analog research and non-space analog biomedical or clinical research) research. When providing evidence from ground-based studies, authors discuss why these results are likely to be applicable in the space environment, offering any available validation information for the use of these ground-based systems. Reports included in this compilation: Evidence Book: Risk of Intervertebral Disc Damage * Evidence Report: Risk of Crew Adverse Health Event Due to Altered Immune Response * Evidence Based Review: Risk of Cardiac Rhythm Problems during Space Flight * Evidence Book: Risk of Accelerated Osteoporosis There is a large body of evidence associated with immune dysregulation and spaceflight. However, current studies onboard the International Space Station (ISS) that are defining space normal for the human immune system remain insufficient to determine clinical risk during exploration space missions. In particular, more in-flight studies are needed using human subjects. Crew health and performance is critical to successful human exploration beyond low Earth orbit. The Human Research Program (HRP) investigates and mitigates the highest risks to human health and performance, providing essential countermeasures and technologies for human space exploration. Risks include physiological and performance effects from hazards such as radiation, altered gravity, and hostile environments, as well as unique challenges in medical support, human factors, and behavioral health support. The HRP utilizes an Integrated Research Plan (IRP) to identify the approach and research activities planned to address these risks, which are assigned to specific Elements within the program. The HRP utilizes various research platforms to conduct research. Ground research occurs in laboratories and analogs that mimic a portion of the spaceflight environment. In addition, the International Space Station (ISS) is used to conduct research requiring the unique environment of space.




Managing Space Radiation Risk in the New Era of Space Exploration


Book Description

As part of the Vision for Space Exploration (VSE), NASA is planning for humans to revisit the Moon and someday go to Mars. An important consideration in this effort is protection against the exposure to space radiation. That radiation might result in severe long-term health consequences for astronauts on such missions if they are not adequately shielded. To help with these concerns, NASA asked the NRC to further the understanding of the risks of space radiation, to evaluate radiation shielding requirements, and recommend a strategic plan for developing appropriate mitigation capabilities. This book presents an assessment of current knowledge of the radiation environment; an examination of the effects of radiation on biological systems and mission equipment; an analysis of current plans for radiation protection; and a strategy for mitigating the risks to VSE astronauts.




Health Standards for Long Duration and Exploration Spaceflight


Book Description

edicine to outline the ethics principles and practices that should guide the agency's decision making for future long duration or exploration missions that fail to meet existing health standards. Health Standards for Long Duration and Exploration Spaceflight identifies an ethics framework, which builds on the work of NASA and others, and presents a set of recommendations for ethically assessing and responding to the challenges associated with health standards for long duration and exploration spaceflight. As technologies improve and longer and more distant spaceflight becomes feasible, NASA and its international and commercial partners will continue to face complex decisions about risk acceptability. This report provides a roadmap for ethically assessing and responding to the challenges associated with NASA's health standards for long duration and exploration missions. Establishing and maintaining a firmly grounded ethics framework for this inherently risky activity is essential to gui