A Search for Higgs Boson Production Via Vector Boson Fusion in Association with a Photon in the H & Rarr ; B B Channel with the Atlas Detector


Book Description

A search for the Standard Model Higgs boson produced via vector boson fusion in association with a photon and decaying to a bottom quark-antiquark pair has been conducted using 12.6 fb--1 of proton-proton collision data collected by the ATLAS detector at a center-of-mass energy [sqrt] s =13TeV at the LHC in 2015 and 2016. The search benefits from a large reduction of the non-resonant multijet background relative to similar searches that do not explicitly require a photon and from efficient triggering aided by the presence of the photon. Multivariate techniques trained using simulated Monte Carlo samples are used to enhance the sensitivity of the analysis by constructing regions of phase space with higher expected signal fractions relative to the background. Data-driven techniques are used in those regions to provide a reliable estimate of the di-b-jet invariant mass spectrum of the non-resonant background. The final statistical analysis of the data relies on a profile likelihood fit to the di-b-jet invariant mass distribution, searching for a signal bump in an otherwise smoothly falling distribution. There is no observed excess above the background-only expectation, and the observed (expected) 95% confidence level upper limit on the production cross section times branching ratio for a Higgs boson mass of 125 GeV is 4.0 (6.0+2.3--1.7) times the Standard Model expectation. The observed signal strength is --3.9 +2.8--2.7 times the Standard Model value. This analysis is also sensitive to Z + gamma production: the observed (expected) upper limit is 2.0 (1.8+0.7-0.5) times the Standard Model expectation with an observed signal strength of 0.3+/-0.8.




A Beauty-ful Boson


Book Description

The analysis described in this thesis is the search for the Higgs boson, decaying into bb pair, in the associated production with a vector boson, in the extreme Higgs boson transverse momentum region where the Higgs boson is reconstructed using the large-R jet technique. The use of the large-R jets allows to add a part of the phase space unexplored so far, which is particularly sensitive to possible new physics. The analysed data have been collected at LHC by the ATLAS detector between 2015 and 2018 at a centre-of-mass energy of √s = 13 TeV. The same dataset has been used to perform the differential pp → ZH and pp → WH cross-section measurements used to extract the information on the Higgs couplings and to put limits on Beyond the Standard Model effects. Furthermore the analysis has been re-used to perform a cross-section measurement of the diboson ZZ and WZ processes because the diboson and the Higgs processes have a similar topology. For the first time the ZZ(bb) and WZ(bb) cross-sections are measured at √s = 13 TeV and the observed cross-section measurements are consistent with the Standard Model predictions.




Search for the Higgs Boson in the Vector Boson Fusion Channel at the ATLAS Detector


Book Description

This Thesis describes the first measurement of, and constraints on, Higgs boson production in the vector boson fusion mode, where the Higgs decays to b quarks (the most common decay channel), at the LHC. The vector boson fusion mode, in which the Higgs is produced simultaneously with a pair of quark jets, provides an unparalleled opportunity to study the detailed properties of the Higgs, including the possibility of parity and CP violation, as well as its couplings and mass. It thus opens up this new field of study for precision investigation as the LHC increases in energy and intensity, leading the way to this new and exciting arena of precision Higgs research.







Evidence for the Production of the Standard Model Higgs Boson Produced Via Vector Boson Fusion in the WW* Channel at the ATLAS Detector


Book Description

In 2012, the ATLAS and CMS experiments at CERN's Large Hadron Collider announced they had each observed a new particle with a mass of about 125 GeV/c^2. Given the available data, the properties of this particle are consistent with the Higgs boson predicted by the Standard Model of particle physics (SM). The Higgs boson, as proposed within the SM, is the simplest manifestation of the Brout-Englert-Higgs mechanism. This discovery was driven by the gluon fusion (ggF) production mode, the dominant Higgs boson production mechanism at the LHC. The SM also predicts that the Higgs boson can be produced by the fusion of two weak vector bosons (VBF). Measuring VBF Higgs boson production is an important test of the SM but it is challenging to measure given its cross section is an order of magnitude smaller than that of ggF. After H->bb, H->WW* is the dominant decay channel for the SM Higgs boson at 125 GeV/c^2 and is therefore a promising channel to measure its properties. In addition, the VBF H->WW* search channel makes it possible to probe the exclusive coupling of the Higgs boson to the weak vector bosons. Precise measurements of these coupling strengths make it possible to constrain new models of physics beyond the SM. Despite its relatively large branching ratio, H->WW*->lnln is a challenging channel to search for the Higgs boson because of the neutrinos in the final state which are not directly detectable by the ATLAS detector. Consequently, it is not possible to fully reconstruct the mass of the WW system. Furthermore, there are several backgrounds that have the same signature in the detector as the signal. Top quark pair production is the largest background in this analysis. A multivariate analysis technique, based on an eight-variable boosted decision tree (BDT), is used to search for VBF H->WW*->lnln in the Run-I data and a subset of the Run-II data. This analysis provides the first evidence for VBF H->WW*->lnln with a significance of 3.2 standard deviations in Run-I and 1.9 standard deviations in Run-II. The measured signal strength relative to the rate predicted by the SM for VBF H->WW*->lnln is 1.3 +/- 0.5 using the Run-I data, and 1.7 +1.1/-0.9 using a fraction of the Run-II data.










Particle Physics Reference Library


Book Description

This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access




Search of the Higgs Boson Produced Through Vector Boson Fusion Decaying to a Pair of Bb with the ATLAS Detector


Book Description

This thesis presents the search of the Higgs boson produced by Vector Boson Fusion (VBF) and decaying to bottom quarks. A search using the ATLAS detector was performed with 2016 proton-proton collision data. The multi-variate analysis measured the signal strengths of both the inclusive Higgs production and the vector-boson fusion production relative to the Standard Model prediction. This analysis led to the observation of Higgs coupling to b-quarks in the summer of 2018. Furthermore, potential improvements of the analysis techniques using complex neural networks are investigated. In order to understand better the Quantum Chromodynamics (QCD) backgrounds of the Higgs search, the characteristic variables of the gluon splitting vertex are measured.




Discovery Of The Higgs Boson


Book Description

The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.