Seismic Refraction Investigation of the Salton Sea Geothermal Area, Imperial Valley, California


Book Description

Seven seismic refraction profiles and four long-distance refraction shots have been used to investigate the Salton Sea geothermal area. From these data, two models of the geothermal and adjacent area are proposed. Model 1 proposes a basement high within the geothermal area trending parallel to the axis of the Imperial Valley. Model 2 assumes a horizontal basement in the E-W direction, and proposes a seismic velocity gradient that increases the apparent basement velocity from east to west approximately 15% within the geothermal area. Both models propose basement dip of 3 degrees to the south, yielding a thickness of sediments of 6.6 km near Brawley, California, in the center of the Imperial Valley. Based on offsets inferred in the sedimentary seismic layers of the geothermal area, two NW-SE trending fault zones are proposed.







Geothermal Energy Update


Book Description




The Salton Sea Geothermal Field, California, as a Near-field Natural Analog of a Radioactive Waste Repository in Salt


Book Description

Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.