A Simple Proportional Conflict Redistribution Rule


Book Description

One proposes a first alternative rule of combination to WAO (Weighted Average Operator) proposed recently by Josang, Daniel and Vannoorenberghe, called Proportional Conflict Redistribution rule (denoted PCR1). PCR1 and WAO are particular cases of WO (the Weighted Operator) because the conflicting mass is redistributed with respect to some weighting factors.




A new generalization of the proportional conflict redistribution rule stable in terms of decision


Book Description

In this chapter, we present and discuss a new generalized proportional conflict redistribution rule. The Dezert-Smarandache extension of the DempsterShafer theory has relaunched the studies on the combination rules especially for the management of the conflict. Many combination rules have been proposed in the last few years. We study here different combination rules and compare them in terms of decision on didactic example and on generated data. Indeed, in real applications, we need a reliable decision and it is the final results that matter. This chapter shows that a fine proportional conflict redistribution rule must be preferred for the combination in the belief function theory.







Generalized proportional conflict redistribution rule applied to Sonar imagery and Radar targets classification


Book Description

In this chapter, we present two applications in information fusion in order to evaluate the generalized proportional conflict redistribution rule presented in chapter [7]. Most of the time the combination rules are evaluated only on simple examples. We study here different combination rules and compare them in terms of decision on real data. Indeed, in real applications, we need a reliable decision and it is the final results that matter. Two applications are presented here: a fusion of human experts opinions on the kind of underwater sediments depicted on a sonar image and a classifier fusion for radar targets recognition.




Belief Conditioning Rules


Book Description

In this paper we propose a new family of Belief Conditioning Rules (BCR) for belief revision. These rules are not directly related with the fusion of several sources of evidence but with the revision of a belief assignment available at a given time according to the new truth (i.e. conditioning constraint) one has about the space of solutions of the problem.




An In-Depth Look at Quantitative Information Fusion Rules


Book Description

This chapter may look like a glossary of the fusion rules and we also introduce new ones presenting their formulas and examples.




An In-Depth Look at Information Fusion Rules and the Unification of Fusion Theories


Book Description

This presentation may look like a glossary of the fusion rules and we also introduce new ones presenting their formulas and examples: Conjunctive, Disjunctive, Exclusive Disjunctive, Mixed Conjunctive-Disjunctive rules, Conditional rule, Dempster's, Yager's, Smets' TBM rule, Dubois-Prade's, Dezert-Smarandache classical and hybrid rules, Murphy's average rule, Inagaki-Lefevre-Colot-Vannoorenberghe Unified Combination rules [and, as particular cases: Iganaki's parameterized rule, Weighting Average Operator, minC (M. Daniel), and newly Proportional Conflict Redistribution rules (SmarandacheDezert) among which PCR5 is the most exact way of redistribution of the conflicting mass to non-empty sets following the path of the conjunctive rule], Zhang's Center Combination rule, Convolutive x-Averaging, Consensus Operator (Josang), Cautious Rule (Smets), α-junctions rules (Smets), etc. and three new T-norm & T-conorm rules adjusted from fuzzy and neutrosophic sets to information fusion (TchamovaSmarandache). Introducing the degree of union and degree of inclusion with respect to the cardinal of sets not with the fuzzy set point of view, besides that of intersection, many fusion rules can be improved.




DSmT: A new paradigm shift for information fusion


Book Description

The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been and still remains of primal importance for the development of reliable information fusion systems.




Canonical Decomposition of Basic Belief Assignment for Decision-Making Support


Book Description

We present a new methodology for decision-making support based on belief functions thanks to a new theoretical canonical decomposition of dichotomous basic belief assignments (BBAs) that has been developed recently. This decomposition based on proportional conflict redistribution rule no 5 (PCR5) always exists and is unique. This new PCR5-based decomposition method circumvents the exponential complexity of the direct fusion of BBAs with PCR5 rule and it allows to fuse quickly many sources of evidences. The method we propose in this paper provides both a decision and an estimation of the quality of the decision made, which is appealing for decision-making support systems.




Unification of Fusion Theories, Rules, Filters, Image Fusion and Target Tracking Methods (UFT)


Book Description

The author has pledged in various papers, conference or seminar presentations, and scientific grant applications (between 2004-2015) for the unification of fusion theories, combinations of fusion rules, image fusion procedures, filter algorithms, and target tracking methods for more accurate applications to our real world problems - since neither fusion theory nor fusion rule fully satisfy all needed applications. For each particular application, one selects the most appropriate fusion space and fusion model, then the fusion rules, and the algorithms of implementation.