NASA Technical Note


Book Description







Investigation of Numerical Techniques for Predicting Aerodynamic Heating to Flight Vehicles


Book Description

The development of complex lifting configurations and high speed maneuvering vehicles has emphasized the need for numerical techniques to predict aerodynamic heating rates as a function of the vehicle trajectory. These numerical programs are not expected to eliminate the requirements for wind tunnel and flight testing, but will be an aid to more efficient use of experimentation time and improve confidence that all potential problem areas on the vehicle have been examined. Three programs, the Hypersonic Arbitrary Body Program, the MINIVER Program, and a third program were examined to determine their usefulness for vehicles with non-circular cross sections and large flat areas as exemplified by lifting reentry vehicles. The MINIVER code was found to be unsuitable for this; the Hypersonic Arbitrary Body Program was applicable to these shapes, but because of program limitations was used for only limited calculations. The last program also had limitations in the areas of geometry description and surface pressure calculations. Efforts were made to remove these limitations and several shapes were investigated. The ultimate goal of this effort was to extend the capabilities of one or more of the heating codes; while no effort was made to improve MINIVER or the Hypersonic Arbitrary Body Program, significant improvements were made in the last program and inviscid flow field program.







Design Methodologies for Space Transportation Systems


Book Description

Annotation "Design Methodologies for Space Transportation Systems is a sequel to the author's earlier text, "Space Transportation: A Systems Approach to Analysis and Design. Both texts represent the most comprehensive exposition of the existing knowledge and practice in the design and project management of space transportation systems, and they reflect a wealth of experience by the author with the design and management of space systems. The text discusses new conceptual changes in the design philosophy away from multistage expendable vehicles to winged, reusable launch vehicles and presents an overview of the systems engineering and vehicle design process as well as systems trades and analysis. Individual chapters are devoted to specific disciplines such as aerodynamics, aerothermal analysis, structures, materials, propulsion, flight mechanics and trajectories, avionics and computers, and control systems. The final chapters deal with human factors, payload, launch and mission operations, safety, and mission assurance. The two texts by the author provide a valuable source of information for the space transportation community of designers, operators, and managers. A companion CD-ROM succinctly packages some oversized figures and tables, resources for systems engineering and launch ranges, and a compendium of software programs. The computer programs include the USAF AIRPLANE AND MISSILE DATCOM CODES (with extensive documentation); COSTMODL for software costing; OPGUID launch vehicle trajectory generator; SUPERFLO-a series of 11 programs intended for solving compressible flow problems in ducts and pipes found in industrial facilities; and a wealth of Microsoft Excel spreadsheet programs covering thedisciplines of statistics, vehicle trajectories, propulsion performance, math utilities,













Optimum Shape for Transpiration-cooled Nosetip of a Re-entry Vehicle


Book Description

The variations of parameters method was used to determine the optimum nose shape for a reentry vehicle having a transpiration-cooled nosetip (TCNT). Three families of nose shapes were considered - The oblate ellipsoid, the flat face - round shoulder, and the spherical arc - round shoulder. These families are bounded by the flat face - sharp corner at one extreme and the hemisphere at the other extreme. The amount of coolant required by each nose shape during reentry was determined by using a high speed computer to couple the aerodynamic equations with the trajectory equations. The optimum shape is the shape which requires the least amount of coolant for reentry. The flat face - sharp corner shape was found to require the least amount of coolant, about 60 percent less water than the hemisphere. Although the time to impact is longer for the flat face, the smaller surface area and lower heating intensity more than offsets the increased reentry time. The possibility of an optimum flat face height was also investigated; no face height was found that minimized the total heating to the vehicle during reentry. (Author).