Modeling Information Diffusion in Online Social Networks with Partial Differential Equations


Book Description

The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era.




Diffusion in Social Networks


Book Description

This book presents the leading models of social network diffusion that are used to demonstrate the spread of disease, ideas, and behavior. It introduces diffusion models from the fields of computer science (independent cascade and linear threshold), sociology (tipping models), physics (voter models), biology (evolutionary models), and epidemiology (SIR/SIS and related models). A variety of properties and problems related to these models are discussed including identifying seeds sets to initiate diffusion, game theoretic problems, predicting diffusion events, and more. The book explores numerous connections between social network diffusion research and artificial intelligence through topics such as agent-based modeling, logic programming, game theory, learning, and data mining. The book also surveys key empirical results in social network diffusion, and reviews the classic and cutting-edge research with a focus on open problems.




Social Networks


Book Description

The goal of this book is to provide a reference for applications of mathematical modelling in social media and related network analysis and offer a theoretically sound background with adequate suggestions for better decision-making. Social Networks: Modelling and Analysis provides the essential knowledge of network analysis applicable to real-world data, with examples from today's most popular social networks such as Facebook, Twitter, Instagram, YouTube, etc. The book provides basic notation and terminology used in social media and its network science. It covers the analysis of statistics for social network analysis such as degree distribution, centrality, clustering coefficient, diameter, and path length. The ranking of the pages using rank algorithms such as Page Rank and HITS are also discussed. Written as a reference this book is for engineering and management students, research scientists, as well as academicians involved in complex networks, mathematical sciences, and marketing research.




Online Social Networks


Book Description

Online Social Networks: Human Cognitive Constraints in Facebook and Twitter provides new insights into the structural properties of personal online social networks and the mechanisms underpinning human online social behavior. As the availability of digital communication data generated by social media is revolutionizing the field of social networks analysis, the text discusses the use of large- scale datasets to study the structural properties of online ego networks, to compare them with the properties of general human social networks, and to highlight additional properties. Users will find the data collected and conclusions drawn useful during design or research service initiatives that involve online and mobile social network environments. Provides an analysis of the structural properties of ego networks in online social networks Presents quantitative evidence of the Dunbar’s number in online environments Discusses original structural and dynamic properties of human social network through OSN analysis




Python for Graph and Network Analysis


Book Description

This research monograph provides the means to learn the theory and practice of graph and network analysis using the Python programming language. The social network analysis techniques, included, will help readers to efficiently analyze social data from Twitter, Facebook, LiveJournal, GitHub and many others at three levels of depth: ego, group, and community. They will be able to analyse militant and revolutionary networks and candidate networks during elections. For instance, they will learn how the Ebola virus spread through communities. Practically, the book is suitable for courses on social network analysis in all disciplines that use social methodology. In the study of social networks, social network analysis makes an interesting interdisciplinary research area, where computer scientists and sociologists bring their competence to a level that will enable them to meet the challenges of this fast-developing field. Computer scientists have the knowledge to parse and process data while sociologists have the experience that is required for efficient data editing and interpretation. Social network analysis has successfully been applied in different fields such as health, cyber security, business, animal social networks, information retrieval, and communications.







Social Phenomena


Book Description

This book focuses on the new possibilities and approaches to social modeling currently being made possible by an unprecedented variety of datasets generated by our interactions with modern technologies. This area has witnessed a veritable explosion of activity over the last few years, yielding many interesting and useful results. Our aim is to provide an overview of the state of the art in this area of research, merging an extremely heterogeneous array of datasets and models. Social Phenomena: From Data Analysis to Models is divided into two parts. Part I deals with modeling social behavior under normal conditions: How we live, travel, collaborate and interact with each other in our daily lives. Part II deals with societal behavior under exceptional conditions: Protests, armed insurgencies, terrorist attacks, and reactions to infectious diseases. This book offers an overview of one of the most fertile emerging fields bringing together practitioners from scientific communities as diverse as social sciences, physics and computer science. We hope to not only provide an unifying framework to understand and characterize social phenomena, but also to help foster the dialogue between researchers working on similar problems from different fields and perspectives.




Social and Economic Networks


Book Description

Networks of relationships help determine the careers that people choose, the jobs they obtain, the products they buy, and how they vote. The many aspects of our lives that are governed by social networks make it critical to understand how they impact behavior, which network structures are likely to emerge in a society, and why we organize ourselves as we do. In Social and Economic Networks, Matthew Jackson offers a comprehensive introduction to social and economic networks, drawing on the latest findings in economics, sociology, computer science, physics, and mathematics. He provides empirical background on networks and the regularities that they exhibit, and discusses random graph-based models and strategic models of network formation. He helps readers to understand behavior in networked societies, with a detailed analysis of learning and diffusion in networks, decision making by individuals who are influenced by their social neighbors, game theory and markets on networks, and a host of related subjects. Jackson also describes the varied statistical and modeling techniques used to analyze social networks. Each chapter includes exercises to aid students in their analysis of how networks function. This book is an indispensable resource for students and researchers in economics, mathematics, physics, sociology, and business.




Computational Data and Social Networks


Book Description

This book constitutes the refereed proceedings of the 9th International Conference on Computational Data and Social Networks, CSoNet 2020, held in Dallas, TX, USA, in December 2020. The 20 full papers were carefully reviewed and selected from 83 submissions. Additionally the book includes 22 special track papers and 3 extended abstracts. The selected papers are devoted to topics such as Combinatorial Optimization and Learning; Computational Methods for Social Good Applications; NLP and Affective Computing; Privacy and Security; Blockchain; Fact-Checking, Fake News and Malware Detection in Online Social Networks; and Information Spread in Social and Data Networks.




Intelligent Data Communication Technologies and Internet of Things


Book Description

This book focuses on the emerging advances in distributed communication systems, big data, intelligent computing and Internet of Things, presenting state-of-the-art research in frameworks, algorithms, methodologies, techniques and applications associated with data engineering and wireless distributed communication technologies. In addition, it discusses potential topics like performance analysis, wireless communication networks, data security and privacy, human computer interaction, 5G Networks, and smart automated systems, which will provide insights for the evolving data communication technologies. In a nutshell, this proceedings book compiles novel and high-quality research that offers innovative solutions for communications in IoT networks.