A Step-by-Step Guide to Exploratory Factor Analysis with R and RStudio


Book Description

This is a concise, easy to use, step-by-step guide for applied researchers conducting exploratory factor analysis (EFA) using the open source software R. In this book, Dr. Watkins systematically reviews each decision step in EFA with screen shots of R and RStudio code, and recommends evidence-based best practice procedures. This is an eminently applied, practical approach with few or no formulas and is aimed at readers with little to no mathematical background. Dr. Watkins maintains an accessible tone throughout and uses minimal jargon and formula to help facilitate grasp of the key issues users will face while applying EFA, along with how to implement, interpret, and report results. Copious scholarly references and quotations are included to support the reader in responding to editorial reviews. This is a valuable resource for upper-level undergraduate and postgraduate students, as well as for more experienced researchers undertaking multivariate or structure equation modeling courses across the behavioral, medical, and social sciences.




A Step-by-Step Guide to Exploratory Factor Analysis with Stata


Book Description

This is a concise, easy to use, step-by-step guide for applied researchers conducting exploratory factor analysis (EFA) using Stata. In this book, Dr. Watkins systematically reviews each decision step in EFA with screen shots of Stata code and recommends evidence-based best practice procedures. This is an eminently applied, practical approach with few or no formulas and is aimed at readers with little to no mathematical background. Dr. Watkins maintains an accessible tone throughout and uses minimal jargon and formula to help facilitate grasp of the key issues users will face when applying EFA, along with how to implement, interpret, and report results. Copious scholarly references and quotations are included to support the reader in responding to editorial reviews. This is a valuable resource for upper level undergraduate and postgraduate students, as well as for more experienced researchers undertaking multivariate or structure equation modeling courses across the behavioral, medical, and social sciences.




Market Research


Book Description

This book is an easily accessible and comprehensive guide which helps make sound statistical decisions, perform analyses, and interpret the results quickly using Stata. It includes advanced coverage of ANOVA, factor, and cluster analyses in Stata, as well as essential regression and descriptive statistics. It is aimed at those wishing to know more about the process, data management, and most commonly used methods in market research using Stata. The book offers readers an overview of the entire market research process from asking market research questions to collecting and analyzing data by means of quantitative methods. It is engaging, hands-on, and includes many practical examples, tips, and suggestions that help readers apply and interpret quantitative methods, such as regression, factor, and cluster analysis. These methods help researchers provide companies with useful insights.




A Step-by-Step Guide to Exploratory Factor Analysis with SPSS


Book Description

This is a concise, easy to use, step-by-step guide for applied researchers conducting exploratory factor analysis (EFA) using SPSS. In this book, Dr. Watkins systematically reviews each decision step in EFA with screen shots and code from SPSS and recommends evidence-based best-practice procedures. This is an eminently applied, practical approach with few or no formulas and is aimed at readers with little to no mathematical background. Dr. Watkins maintains an accessible tone throughout and uses minimal jargon to help facilitate grasp of the key issues users will face while applying EFA, along with how to implement, interpret, and report results. Copious scholarly references and quotations are included to support the reader in responding to editorial reviews. This is a valuable resource for upper-level undergraduate and postgraduate students, as well as for more experienced researchers undertaking multivariate or structure equation modeling courses across the behavioral, medical, and social sciences.




Applied Statistics Using Stata


Book Description

Straightforward, clear, and applied, this book will give you the theoretical and practical basis you need to apply data analysis techniques to real data. Combining key statistical concepts with detailed technical advice, it addresses common themes and problems presented by real research, and shows you how to adjust your techniques and apply your statistical knowledge to a range of datasets. It also embeds code and software output throughout and is supported by online resources to enable practice and safe experimentation. The book includes: · Original case studies and data sets · Practical exercises and lists of commands for each chapter · Downloadable Stata programmes created to work alongside chapters · A wide range of detailed applications using Stata · Step-by-step guidance on writing the relevant code. This is the perfect text for anyone doing statistical research in the social sciences getting started using Stata for data analysis.




A Step-by-Step Guide to Exploratory Factor Analysis with R and RStudio


Book Description

This is a concise, easy to use, step-by-step guide for applied researchers conducting exploratory factor analysis (EFA) using the open source software R. In this book, Dr. Watkins systematically reviews each decision step in EFA with screen shots of R and RStudio code, and recommends evidence-based best practice procedures. This is an eminently applied, practical approach with few or no formulas and is aimed at readers with little to no mathematical background. Dr. Watkins maintains an accessible tone throughout and uses minimal jargon and formula to help facilitate grasp of the key issues users will face while applying EFA, along with how to implement, interpret, and report results. Copious scholarly references and quotations are included to support the reader in responding to editorial reviews. This is a valuable resource for upper-level undergraduate and postgraduate students, as well as for more experienced researchers undertaking multivariate or structure equation modeling courses across the behavioral, medical, and social sciences.




Discovering Structural Equation Modeling Using Stata 13 (Revised Edition)


Book Description

Discovering Structural Equation Modeling Using Stata, Revised Edition is devoted to Stata’s sem command and all it can do. Learn about its capabilities in the context of confirmatory factor analysis, path analysis, structural equation modeling, longitudinal models, and multiple-group analysis. Each model is presented along with the necessary Stata code, which is parsimonious, powerful, and can be modified to fit a wide variety of models. The datasets used are downloadable, offering a hands-on approach to learning. A particularly exciting feature of Stata is the SEM Builder. This graphical interface for structural equation modeling allows you to draw publication-quality path diagrams and fit the models without writing any programming code. When you fit a model with the SEM Builder, Stata automatically generates the complete code that you can save for future use. Use of this unique tool is extensively covered in an appendix and brief examples appear throughout the text.




Confirmatory Factor Analysis


Book Description

Measurement connects theoretical concepts to what is observable in the empirical world, and is fundamental to all social and behavioral research. In this volume, J. Micah Roos and Shawn Bauldry introduce a popular approach to measurement: Confirmatory Factor Analysis (CFA). As the authors explain, CFA is a theoretically informed statistical framework for linking multiple observed variables to latent variables that are not directly measurable. The authors begin by defining terms, introducing notation, and illustrating a wide variety of measurement models with different relationships between latent and observed variables. They proceed to a thorough treatment of model estimation, followed by a discussion of model fit. Most of the volume focuses on measures that approximate continuous variables, but the authors also devote a chapter to categorical indicators. Each chapter develops a different example (sometimes two) covering topics as diverse as racist attitudes, theological conservatism, leadership qualities, psychological distress, self-efficacy, beliefs about democracy, and Christian nationalism drawn mainly from national surveys. Data to replicate the examples are available on a companion website, along with code for R, Stata, and Mplus.




Using Stata for Quantitative Analysis


Book Description

Using Stata for Quantitative Analysis, Second Edition offers a brief, but thorough introduction to analyzing data with Stata software. It can be used as a reference for any statistics or methods course across the social, behavioral, and health sciences since these fields share a relatively similar approach to quantitative analysis. In this book, author Kyle Longest teaches the language of Stata from an intuitive perspective, furthering students’ overall retention and allowing a student with no experience in statistical software to work with data in a very short amount of time. The self-teaching style of this book enables novice Stata users to complete a basic quantitative research project from start to finish. The Second Edition covers the use of Stata 13 and can be used on its own or as a supplement to a research methods or statistics textbook.




Introduction to Factor Analysis


Book Description

Describes the mathematical and logical foundations at a level that does not presume advanced mathematical or statistical skills. It illustrates how to do factor analysis with several of the more popular packaged computer programs.