Study of Bacteriorhodopsin in a Controlled Lipid Environment


Book Description

This book focuses on the study of how the properties of nanodiscs, such as lipid composition and size, influence the function of the embedding integral membrane protein, bacteriorhodopsin. The author performed systematic studies to show that the lipid composition and the charge of the hydrophobic head and the structure of hydrophilic tails affect the photocycle pathway of bacteriorhodopsin, which is closely associated with its proton-pumping activity. Furthermore, the author demonstrated a highly efficient method for extracting membrane proteins directly from the biological membrane, preserving protein conformation, function and essential native lipids. This book demonstrates optimization and sample preparation, and presents practical methods of preparing membrane protein-embedded nanodisc samples for biophysical studies, which benefit structural and functional studies in the field of membrane protein characterization, both.




Study of Bacteriorhodopsin in a Controlled Lipid Environment


Book Description

This book focuses on the study of how the properties of nanodiscs, such as lipid composition and size, influence the function of the embedding integral membrane protein, bacteriorhodopsin. The author performed systematic studies to show that the lipid composition and the charge of the hydrophobic head and the structure of hydrophilic tails affect the photocycle pathway of bacteriorhodopsin, which is closely associated with its proton-pumping activity. Furthermore, the author demonstrated a highly efficient method for extracting membrane proteins directly from the biological membrane, preserving protein conformation, function and essential native lipids. This book demonstrates optimization and sample preparation, and presents practical methods of preparing membrane protein-embedded nanodisc samples for biophysical studies, which benefit structural and functional studies in the field of membrane protein characterization, both.




Handbook of Lipid Bilayers


Book Description

Now in its second edition, the Handbook of Lipid Bilayers is a groundbreaking work that remains the field's definitive text and only comprehensive source for primary physicochemical data relating to phospholipid bilayers. Along with basic thermodynamic data, coverage includes both dynamic and structural properties of phospholipid bilayers. It is an




Biotechnological Applications of Lipid Microstructures


Book Description

In the twenty years since Bangham first described the model membrane system which he named "liposomes", a generation of scientists have explored the properties of lipid-based microstructures. Liposomes of all sizes, tubular and helical structures, and self-assembled lipid films have been prepared and studied in detail. Many of the advances· in the basic research have led to significant technological applications. Lipid microstructure research has begun to mature and it is an appropriate time for an in-depth look at the biotechnological applications, both achieved and potential. As a forum for active discussions within this growipg field, two Workshops were organized: "Technological Applications of Phospholipid Bilayers, Vesicles and Thin Films", held in Puerto de la Cruz, Tenerife, Canary Islands; and "Biotechnological Applications of Membrane Studies", held in Donostia-San Sabastian, Basque Country, Spain. The organizers of these Workshops believe that development of lipid self-assembly into a technological discipline requires significant interaction across traditional scientific boundaries. Thus the Workshops gathered an eclectic group of colleagues whose interests ranged from basic research into structure, interactions and stabilization of biomembranes to applications of lipid microstructures such as artificial cells, diagnostic reagents, energy transfer systems, and biosensors.




Advances in Photosynthesis Research


Book Description

The Sixth International Congress on Photosynthesis took place from 1 to 6 August 1983, on the Campus of the "Vrije Universiteit Brussel", in Brussels, Belgium. These Proceedings contain most of the scientific contributions offered during the Congress. The Brussels Congress was the largest thus far held in the series of International Congresses on Photosynthesis. It counted over 1100 active participants. The organizers tried to minimize the disadvantages of such a large size by making maximum use of the facili ties available on a university campus. Most contributions were offered in the form of posters which were displayed in a substantial number of classrooms. The discussion sessions, twice a day, four or five in parallel, took place in lecture rooms in the very vicinity of these classrooms. In this way it was attempted to generate the atmosphere of a small meeting. The unity of the subject Photosynthesis was preserved in the ten plenary lectures, organ1sed in such a way that a general overview of two diverse topics was given every day. In addition, there were the five times four parallel symposia dealing with some six teen general topics. Every editor of proceedings of a congress is faced with the problem of editing and arranging the contributions, a problem compounded by the wide diversity and the large number of the 753 manuscripts.




Solid State NMR Studies of Biopolymers


Book Description

The content of this volume has been added to eMagRes (formerly Encyclopedia of Magnetic Resonance) - the ultimate online resource for NMR and MRI. The field of solid state NMR of biological samples [ssNMR] has blossomed in the past 5-10 years, and a cohesive overview of the technology is needed for new practitioners in industry and academia. This title provides an overview of Solid State NMR methods for studying structure dynamics and ligand-binding in biopolymers, and offers an overview of RF pulse sequences for various applications, including not only a systematic catalog but also a discussion of theoretical tools for analysis of pulse sequences. Practical examples of biochemical applications are included, along with a detailed discussion of the many aspects of sample preparation and handling that make spectroscopy on solid proteins successful. About EMR Handbooks / eMagRes Handbooks The Encyclopedia of Magnetic Resonance (up to 2012) and eMagRes (from 2013 onward) publish a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks / eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of articles from eMagRes. In consultation with the eMagRes Editorial Board, the EMR Handbooks / eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written (together with updates of some already existing articles) to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this Handbook and the complete content of eMagRes at your fingertips! Visit: www.wileyonlinelibrary.com/ref/eMagRes View other eMagRes publications here




Crystallization of Membrane Proteins


Book Description

The precise knowledge of the structure of biological macromolecules forms the basis of understanding their function and their mechanism of action. It also lays the foundation for rational protein and drug design. The only method to obtain this knowledge is still crystallography. At present, the structures of about 400 proteins are known at or nearly at atomic proteins. However, only two of them are membrane proteins or complexes of the membrane proteins. The reasons for the difference is not the crystals of membrane proteins resists forming special problems when being analysed. The reason is that the membrane proteins resist into forming into well-ordered crystals. The intention of this book is to help to produce well-ordered crystals proteins and to provide guidelines, it is aimed at both biochemists and protein crystallographer‘s.




Membranes to Molecular Machines


Book Description

Today's science tells us that our bodies are filled with molecular machinery that orchestrates all sorts of life processes. When we think, microscopic "channels" open and close in our brain cell membranes; when we run, tiny "motors" spin in our muscle cell membranes; and when we see, light operates "molecular switches" in our eyes and nerves. A molecular-mechanical vision of life has become commonplace in both the halls of philosophy and the offices of drug companies, where researchers are developing “proton pump inhibitors” or medicines similar to Prozac. Membranes to Molecular Machines explores just how late twentieth-century science came to think of our cells and bodies this way. This story is told through the lens of membrane research, an unwritten history at the crossroads of molecular biology, biochemistry, physiology, and the neurosciences, that directly feeds into today's synthetic biology as well as nano- and biotechnology. Mathias Grote shows how these sciences not only have made us think differently about life, they have, by reworking what membranes and proteins represent in laboratories, allowed us to manipulate life as "active matter" in new ways. Covering the science of biological membranes in the United States and Europe from the mid-1960s to the 1990s, this book connects that history to contemporary work with optogenetics, a method for stimulating individual neurons using light, and will enlighten and provoke anyone interested in the intersection of chemical research and the life sciences—from practitioner to historian to philosopher. The research described in the book and its central actor, Dieter Oesterhelt, were honored with the 2021 Albert Lasker Basic Medical Research Award for his contribution to the development of optogenetics.




Membrane Protein Crystallization


Book Description

This volume of Current Topics in Membranes focuses on Membrane Protein Crystallization, beginning with a review of past successes and general trends, then further discussing challenges of mebranes protein crystallization, cell free production of membrane proteins and novel lipids for membrane protein crystallization. This publication also includes tools to enchance membrane protein crystallization, technique advancements, and crystallization strategies used for photosystem I and its complexes, establishing Membrane Protein Crystallization as a needed, practical reference for researchers.