A Student's Guide to Waves


Book Description

Written to complement course textbooks, this book focuses on the topics that undergraduates in physics and engineering find most difficult.




A Student's Guide to Waves


Book Description

Written to complement course textbooks, this book focuses on the topics that undergraduates in physics and engineering find most difficult.




A Student's Guide to Maxwell's Equations


Book Description

Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.




A Student's Guide to the Schrödinger Equation


Book Description

A clear guide to the key concepts and mathematical techniques underlying the Schrödinger equation, including homework problems and fully worked solutions.




A Student's Guide to Lagrangians and Hamiltonians


Book Description

A concise treatment of variational techniques, focussing on Lagrangian and Hamiltonian systems, ideal for physics, engineering and mathematics students.




A Student's Guide to Fourier Transforms


Book Description

Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science.




A Student's Guide to the Mathematics of Astronomy


Book Description

Plain-language explanations and a rich set of supporting material help students understand the mathematical concepts and techniques of astronomy.




A Student's Guide to Laplace Transforms


Book Description

Clear explanations and supportive online material develop an intuitive understanding of the meaning and use of Laplace.




The Wave


Book Description

This novel dramatizes an incident that took place in a California school in 1969. A teacher creates an experimental movement in his class to help students understand how people could have followed Hitler. The results are astounding. The highly disciplined group, modeled on the principles of the Hilter Youth, has its own salute, chants, and special ways of acting as a unit and sweeps beyond the class and throughout the school, evolving into a society willing to give up freedom for regimentation and blind obedience to their leader. All will learn a lesson that will never be forgotten.




A Student's Guide to Vectors and Tensors


Book Description

Vectors and tensors are among the most powerful problem-solving tools available, with applications ranging from mechanics and electromagnetics to general relativity. Understanding the nature and application of vectors and tensors is critically important to students of physics and engineering. Adopting the same approach used in his highly popular A Student's Guide to Maxwell's Equations, Fleisch explains vectors and tensors in plain language. Written for undergraduate and beginning graduate students, the book provides a thorough grounding in vectors and vector calculus before transitioning through contra and covariant components to tensors and their applications. Matrices and their algebra are reviewed on the book's supporting website, which also features interactive solutions to every problem in the text where students can work through a series of hints or choose to see the entire solution at once. Audio podcasts give students the opportunity to hear important concepts in the book explained by the author.