Low-temperature Combustion and Autoignition


Book Description

Combustion has played a central role in the development of our civilization which it maintains today as its predominant source of energy. The aim of this book is to provide an understanding of both fundamental and applied aspects of low-temperature combustion chemistry and autoignition. The topic is rooted in classical observational science and has grown, through an increasing understanding of the linkage of the phenomenology to coupled chemical reactions, to quite profound advances in the chemical kinetics of both complex and elementary reactions. The driving force has been both the intrinsic interest of an old and intriguing phenomenon and the centrality of its applications to our economic prosperity. The volume provides a coherent view of the subject while, at the same time, each chapter is self-contained.













Autoignition and Chemical-Kinetic Mechanisms of Homogeneous Charge Compression Ignition Combustion for the Fuels with Various Autoignition Reactivity


Book Description

This work demonstrates the autoignition and chemical-kinetic mechanisms of homogeneous charge compression ignition (HCCI) combustion for the fuels with various autoignition reactivity. This is done for four fuels: methane, dimethyl ether (DME), iso-octane and n-heptane. Methane and iso-octane are selected as the single-stage ignition fuel, and DME and n-heptane are selected as the two-stage ignition fuel. As a tool for understanding the characteristics of autoignition and combustion process in HCCI engine, a zero-dimensional single-zone engine model of 'CHEMKIN' in Chemkin-Pro was used. The complete compression and expansion strokes were modeled using an engine with a connecting-rod length to crank-radius ratio of 3.5 and a compression ratio of 13. A detailed chemical-kinetic mechanism for methane and DME is Mech_56.54 (113 species and 710 reactions). For iso-octane and n-heptane, a detailed chemical-kinetic mechanism from Lawrence Livermore National Laboratory (1034 species and 4236 reactions) is used. The results show that methane and iso-octane exhibit only the main heat release, 'high-temperature heat release (HTHR)' by high-temperature reactions (HTR). In contrast, both DME and n-heptane exhibit the first heat release 'low-temperature heat release (LTHR)' associated with low-temperature reactions (LTR) before HTHR.




HCCI and CAI Engines for the Automotive Industry


Book Description

Homogeneous charge compression ignition (HCCI)/controlled auto-ignition (CAI) has emerged as one of the most promising engine technologies with the potential to combine fuel efficiency and improved emissions performance, offering reduced nitrous oxides and particulate matter alongside efficiency comparable with modern diesel engines. Despite the considerable advantages, its operational range is rather limited and controlling the combustion (timing of ignition and rate of energy release) is still an area of on-going research. Commercial applications are, however, close to reality. HCCI a.







Lean Combustion


Book Description

Combustion under sufficiently fuel-lean conditions can have the desirable attributes of high efficiency and low emissions, this being particularly important in light of recent and rapid increases in the cost of fossil fuels and concerns over the links between combustion and global climate change. Lean Combustion is an eminently authoritative, reference work on the latest advances in lean combustion technology and systems. It will offer engineers working on combustion equipment and systems both the fundamentals and the latest developments in more efficient fuel usage and in much-sought-after reductions of undesirable emissions, while still achieving desired power output and performance. This volume brings together research and design of lean combustion systems across the technology spectrum in order to explore the state-of-the-art in lean combustion and its role in meeting current and future demands on combustion systems. Readers will learn about advances in the understanding of ultra lean fuel mixtures and how new types of burners and approaches to managing heat flow can reduce problems often found with lean combustion such as slow, difficult ignition and frequent flame extinction. The book will also offer abundant references and examples of recent real-world applications. - Covers all major recent developments in lean combustion science and technology, with new applications in both traditional combustion schemes as well as such novel uses as highly preheated and hydrogen-fueled systems - Offers techniques for overcoming difficult ignition problems and flame extinction with lean fuel mixtures - Covers new developments in lean combustion using high levels of pre-heat and heat re-circulating burners, as well as the active control of lean combustion instabilities