B Decays


Book Description

This 2nd edition is an extensive update of "B Decays?. The revisions are necessary because of the extensive amount of new data and new theoretical ideas. This book reviews what is known about b-quark decays and also looks at what can be learned in the future.The importance of this research area is increasing, as evidenced by the approval of the luminosity upgrade for CESR and the asymmetric B factories at SLAC and KEK, and the possibility of experiments at hadron colliders.The key experimental observations made thus far, measurement of the lifetimes of the different B species, B0-B0 mixing, the discovery of ?Penguin? mediated decays, and the extraction of the CKM matrix elements Vub and Vcb from semileptonic decays, as well as more mundane results, are described in great detail by the experimentalists who have been closely involved with making the measurements. Theoretical progress in understanding b-quark decays using HQET and lattice gauge techniques are described by theorists who have developed and used these techniques.Synthesizing the experimental and theoretical information, several articles discuss the implications for the ?Standard Model? and how further tests can be done using measurements of CP violation in the B system.




Annual Commencement


Book Description




Particle Physics Reference Library


Book Description

This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access










Selected Papers of K.C. Chou


Book Description

Professor Kuang-Chao Chou (also known as Guang-Zhao Zhou) is the former President of Chinese Academy of Sciences. He has been elected as the Academician of Chinese Academy of Sciences, Foreign Associate of the US National Academy of Sciences, Fellow of the Third World Academy of Science, Foreign Member of Soviet (Russian) Academy of Sciences, Czechoslovak Academy of Sciences, Bulgarian Academy of Sciences, Romania Academy of Sciences, Mongolian Academy of Sciences, the European Academy of Arts, Sciences and Humanities, Membre fondateur Academie Francophone d'Ingenieurs.He also served as the director of Institute of Theoretical Physics at the Chinese Academy of Sciences, the Dean of the Science School of Tsinghua University, the Chairman of the China Association for Sciences and Technology, the President of Pacific Science Association, Vice President of Third World Academy of Sciences.?Zhou is a first rate physicist: broad, powerful and very quick in grasping new ideas. His style of doing physics reminds me of that of Landau, Salam, and of Teller.?C N Yang?His published papers have won uniformly high praises by the international scientific community and his articles are always written with depth and elegance.?T D LeeThis volume presents a collection of selected papers written by Prof Chou. The papers are organized into four parts according to the subject of research areas and the language of publishing journals. Part I (in English) and Part III (in Chinese) are papers on field theories, particle physics and nuclear physics, Part II (in English) and Part IV (in Chinese) are papers on statistical physics and condensed matter physics. From the published papers, it illustrates and is clearly evident how Prof Chou was constantly at the frontiers of theoretical physics in various periods and carried out creative research works experimenting with initial ideas and motivations, as well as how he has driven and worked in different key research directions of theoretical physics, all for which he has made significant contributions to various interesting research areas and interdisciplinary fields.







A Search for Displaced Leptons in the ATLAS Detector


Book Description

This thesis presents a search for long-lived particles decaying into displaced electrons and/or muons with large impact parameters. This signature provides unique sensitivity to the production of theoretical lepton-partners, sleptons. These particles are a feature of supersymmetric theories, which seek to address unanswered questions in nature. The signature searched for in this thesis is difficult to identify, and in fact, this is the first time it has been probed at the Large Hadron Collider (LHC). It covers a long-standing gap in coverage of possible new physics signatures. This thesis describes the special reconstruction and identification algorithms used to select leptons with large impact parameters and the details of the background estimation. The results are consistent with background, so limits on slepton masses and lifetimes in this model are calculated at 95% CL, drastically improving on the previous best limits from the Large Electron Positron Collider (LEP).




Precision Tests Of The Standard Electroweak Model


Book Description

High precision measurements of weak neutral current and charged current processes and of the properties of the Z and W bosons have established the standard electroweak model as correct down to a distance scale of 10-16 cm, and are a sensitive probe of possible underlying physics. In this book, all aspects of the program are considered in detail, including the structure of the standard model, radiative corrections, high precision experiments, and their implications. The major classes of experiments are surveyed, covering the experiments themselves, the data analysis, results, and prospects.This volume is a detailed reference for theoretical and experimental researchers, as well as an introductory text for advanced students.




An Introductory Course of Particle Physics


Book Description

For graduate students unfamiliar with particle physics, An Introductory Course of Particle Physics teaches the basic techniques and fundamental theories related to the subject. It gives students the competence to work out various properties of fundamental particles, such as scattering cross-section and lifetime. The book also gives a lucid summary of the main ideas involved. In giving students a taste of fundamental interactions among elementary particles, the author does not assume any prior knowledge of quantum field theory. He presents a brief introduction that supplies students with the necessary tools without seriously getting into the nitty-gritty of quantum field theory, and then explores advanced topics in detail. The book then discusses group theory, and in this case the author assumes that students are familiar with the basic definitions and properties of a group, and even SU(2) and its representations. With this foundation established, he goes on to discuss representations of continuous groups bigger than SU(2) in detail. The material is presented at a level that M.Sc. and Ph.D. students can understand, with exercises throughout the text at points at which performing the exercises would be most beneficial. Anyone teaching a one-semester course will probably have to choose from the topics covered, because this text also contains advanced material that might not be covered within a semester due to lack of time. Thus it provides the teaching tool with the flexibility to customize the course to suit your needs.