A Study of the Axial Crush Response of Hydroformed Aluminum Alloy Tubes


Book Description

There exists considerable motivation to reduce vehicle weight through the adoption of lightweight materials, such as aluminum alloys, while maintaining energy absorption and component integrity under crash conditions. To this end, it is of particular interest to study the crash behaviour of lightweight tubular hydroformed structures to determine how the forming behaviour affects the axial crush response. Thus, the current research has studied the dynamic crush response of both non-hydroformed and hydroformed EN-AW 5018 and AA5754 aluminum alloy tubes using both experimental and numerical methods. Experiments were performed in which hydroforming process parameters were varied in a parametric fashion after which the crash response was measured. Experimental parameters included the tube thickness and the hydroformed corner radii of the tubes. Explicit dynamic finite element simulations of the hydroforming and crash events were carried out with particular attention to the transfer of forming history from the hydroforming simulations to the crash models. The results showed that increases in the strength of the material due to work hardening during hydroforming were beneficial in increasing energy absorption during crash. However, it was shown that thinning in the corners of the tube during hydroforming decreased the energy absorption capabilities during axial crush. Residual stresses resulting from hydroforming had little effect on the energy absorption characteristics during axial crush. The current research has shown that, in addition to capturing the forming history in the crash models, it is also important to account for effects of material non-linearity such as kinematic hardening, anisotropy, and strain-rate effects in the finite element models. A model combining a non-linear kinematic hardening model, the Johnson-Cook rate sensitive model, and the Yld2000-2d anisotropic model was developed and implemented in the finite element simulations. This combined model did not account for the effect of rotational hardening (plastic spin) due to plastic deformation. It is recommended that a combined constitutive model, such as the one described in this research, be utilized for the finite element study of materials that show sensitivity to the Bauschinger effect, strain-rate effects, and anisotropy.




On the Axial Crushing and Failure of Aluminum Alloy Tubes


Book Description

The use of aluminum alloys for light-weighting purposes in energy absorbing components of automobiles is hindered by the relatively low ductility and more complicated constitutive behavior of these alloys. This study presents results from series of quasi-static and dynamic axial crushing experiments on extruded Al-6061-T6 circular tubes of varying D/t ratios. A custom drop-weight testing facility was used to perform the dynamic experiments. Crushing led to axisymmetric, mode-2, and mode-3 concertina folding. In the quasi-static experiments, the folding was monitored using time-lapse photography; dynamic crushing was monitored using high-speed photography. The crushing responses and energy absorption capacities are evaluated and failures were recorded. Failure was observed in most of the experiments with the severity depending on the D/t and mode of folding. The experiments are simulated with three-dimensional, nonlinear finite element analysis using the von Mises, the non-quadratic Hosford, and the calibrated anisotropic Yld04-3D models. The Yld04-3D model was found to most accurately reproduce the structural response under both quasi-static and dynamic loadings. This model was used to the monitor the strains induced in two example cases: axisymmetric folding under quasi-static loading, and mode-2 folding under dynamic loading. The analysis predicted maximum strains to develop at locations on the model tube where failure is observed on the specimen in the experiments. It is concluded that the Yld04-3D constitutive model is most suitable for the prediction of the structural response and failure in tube crushing of this aluminum alloy




Light Metals: Advances in Research and Application: 2011 Edition


Book Description

Light Metals: Advances in Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Light Metals. The editors have built Light Metals: Advances in Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Light Metals in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Light Metals: Advances in Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Structural Impact


Book Description

Structural Impact is concerned with the behaviour of structures and components subjected to large dynamic, impact and explosive loads which produce inelastic deformations. It is of interest for safety calculations, hazard assessments and energy absorbing systems throughout industry. The first five chapters introduce the rigid plastic methods of analysis for the static behaviour and the dynamic response of beams, plates and shells. The influence of transverse shear, rotatory inertia, finite displacements and dynamic material properties are introduced and studied in some detail. Dynamic progressive buckling, which develops in several energy absorbing systems, and the phenomenon of dynamic plastic buckling are introduced. Scaling laws are discussed which are important for relating the response of small-scale experimental tests to the dynamic behaviour of full-scale prototypes. This text is invaluable to undergraduates, graduates and professionals learning about the behaviour of structures subjected to large impact, dynamic and blast loadings producing an inelastic response.




Dynamic Axial and Oblique Crushing Og Foam-filled Aluminium Conical Tubes


Book Description

The aim of this study was to investigate the response of conical aluminium tubes subjected to dynamic axial and oblique loading. The effect of foam filling on the energy absorption for variation in geometry, tube material and filler density was evaluated and discussed. This study employs a nonlinear finite element model which was validated against experimental data. Main trends in the experimental results are well captured by the FE results under dynamic axial and oblique loading.










Structural Crashworthiness


Book Description







Proceedings of the 34th International MATADOR Conference


Book Description

Presented here are 73 refereed papers given at the 34th MATADOR Conference held at UMIST in July 2004. The MATADOR series of conferences covers the topics of Manufacturing Automation and Systems Technology, Applications, Design, Organisation and Management, and Research. The 34th proceedings contains original papers contributed by researchers from many countries on different continents. The papers cover both the technological aspect of manufacturing processes; and the systems, business and management features of manufacturing enterprise. The papers in this volume reflect: - the importance of manufacturing to international wealth creation; - the necessity of responsiveness and agility of manufacturing companies to meet market-led requirements and international chan≥ - the role of information technology and electronic communications in the growth of global manufacturing enterprises; - the impact of new technologies, new materials and processes, on the ability to produce goods of higher quality, more quickly, to meet markets needs at a lower cost. Some of the major generic developments which have taken place in these areas since the 33rd MATADOR conference was held in 2000 are reported in this volume.