A Supersonic Business-Jet Concept Designed for Low Sonic Boom


Book Description

Ongoing human-response studies of sonic-boom noise indicated that a previous level of 1.0 psf might still be too annoying. This led to studies of a Supersonic Business Jet (SBJ), which might generate lower, more acceptable ground overpressures. To determine whether methods for designing a High Speed Civil Transport (HSCT) could be successfully applied, a SBJ concept was designed at the langley Research Center. It would cruise at Mach 2, carry 10 passengers for 4000 nautical miles, and generate a 0.50 psf or less on the ground under the flight path at start of cruise. Results indicated that a 10-passenger, low-boom SBJ design was just as technically demanding as a 300-passenger, low-boom HSCT design. In this report, the sources of these technical problems are identified, and ideas for addressing them are discussed.Mack, Robert J.Langley Research CenterSONIC BOOMS; SUPERSONIC TRANSPORTS; AIRCRAFT DESIGN; SUPERSONIC JET FLOW; CIVIL AVIATION; HUMAN REACTIONS; PASSENGERS...




Commercial Supersonic Technology


Book Description

High-speed flight is a major technological challenge for both commercial and business aviation. As a first step in revitalizing efforts by the National Aeronautics and Space Administration (NASA) to achieve the technology objective of high-speed air travel, NASA requested the National Research Council (NRC) to conduct a study that would identify approaches for achieving breakthroughs in research and technology for commercial supersonic aircraft. Commercial Supersonic Technology documents the results of that effort. This report describes technical areas where ongoing work should be continued and new focused research initiated to enable operational deployment of an environmentally acceptable, economically viable commercial aircraft capable of sustained supersonic flight, including flight over land, at speeds up to approximately Mach 2 in the next 25 years or less.




Subsonic versus Supersonic Business Jets - Full Concept Comparison considering Technical, Environmental and Economic Aspects


Book Description

Inhaltsangabe:Introduction: On the 26th of August 2010 the new ultra-large-cabin ultra-long-range Gulfstream G650 business jet reached Mach 0.995 during its flight test campaign (1). This is almost the speed of sound (Mach 1) and inspires one to say, why not fly faster than the speed of sound! Reduce travelling time in the commercial business aviation segment. This is, however not a completely new vision. Many companies and research facilities have already spent a lot of time and investment in studies to investigate the feasibility of supersonic flight. Entry Into Service (EIS) for the new Gulfstream G650 is scheduled for 2012. In the following the main performance parameter of the G650 aircraft will be summarised. The parameters range, cruise speed, MTOW, etc. have been selected and serve as a basis to allow an appropriate comparison between the G650 as the latest high end Subsonic Business Jet and potential in future Supersonic Business Jets (SSBJ) within this subject Master Thesis. With the impressive maximum range of nearly 13,000 km the G650 can connect Dubai with New York or London with Buenos Aires within almost 14 hours. Maximum Range @ Normal Cruise Speed: 7,000 nm/12,964 km. Normal Cruise Speed Mach: 0.85/904 km/h. Mmo (Maximum Operating Mach Number): Mach 0.925. Maximum Cruise Altitude: 51,000 ft/15,545 m. Maximum Takeoff Weight (MTOW): 99,600 lb/45,178 kg. Maximum Fuel Weight: 44,200 lb/20,049 kg. Passengers: 11 18. Price: appr. 60-70 million USD. Gulfstream business rival Bombardier Aerospace also announced in October 2010 two new high end models, the Global 7000 and 8000 with a maximum range of 7,300 nm (13,520 km) and 7,900 nm (14,631 km) at cruise speed Mach 0.85. Entry Into Service is scheduled for 2016 (Global 7000) and 2017 (Global 8000). A comprehensive overview of business jets in service and in development is given in attachment 13.1. A Supersonic Business Jet flying at Mach 2 cruise speed could virtually halve the travelling time, which would enormously enhance the mobility and flexibility. In order to achieve this ambition a paradigm shift is required. New technologies must be established, the impact on the environment must be understood and minimised, existing regulations must be changed to permit overland flight restrictions and the product still needs to be economically viable. All of the above aspects must be considered and will be subject for discussion within this Master Thesis (See also figure [...]




Quieting the Boom


Book Description




Innovation in Aeronautics


Book Description

Innovation in aerospace design and engineering is essential to meet the many challenges facing this sector. Innovation in aeronautics explores both a range of innovative ideas and how the process of innovation itself can be effectively managed.After an introduction to innovation in aeronautics, part one reviews developments including biologically-inspired technologies, morphing aerodynamic concepts, jet engine design drivers, and developments underpinned by digital technologies. The environment and human factors in innovation are also explored as are trends in supersonic passenger air travel. Part two goes on to examine change and the processes and management involved in innovative technology development. Challenges faced in aeronautical production are the focus of part three, which reviews topics such as intellectual property and patents, risk mitigation and the use of lean engineering. Finally, part four examines key issues in what makes for successful innovation in this sector.With its distinguished editors and international team of expert contributors, Innovation in aeronautics is an essential guide for all those involved in the design and engineering of aerospace structures and systems. - Explores a range of innovative aerospace design ideas - Discusses how the process of innovation itself can be effectively managed - Reviews developments including biologically-inspired technologies, morphing aerodynamic concepts, jet engine design drivers and developments underpinned by digital technologies




Aircraft Design Projects


Book Description

Written with students of aerospace or aeronautical engineering firmly in mind, this is a practical and wide-ranging book that draws together the various theoretical elements of aircraft design - structures, aerodynamics, propulsion, control and others - and guides the reader in applying them in practice. Based on a range of detailed real-life aircraft design projects, including military training, commercial and concept aircraft, the experienced UK and US based authors present engineering students with an essential toolkit and reference to support their own project work.All aircraft projects are unique and it is impossible to provide a template for the work involved in the design process. However, with the knowledge of the steps in the initial design process and of previous experience from similar projects, students will be freer to concentrate on the innovative and analytical aspects of their course project. The authors bring a unique combination of perspectives and experience to this text. It reflects both British and American academic practices in teaching aircraft design. Lloyd Jenkinson has taught aircraft design at both Loughborough and Southampton universities in the UK and Jim Marchman has taught both aircraft and spacecraft design at Virginia Tech in the US.* Demonstrates how basic aircraft design processes can be successfully applied in reality* Case studies allow both student and instructor to examine particular design challenges * Covers commercial and successful student design projects, and includes over 200 high quality illustrations




Innovation in Flight


Book Description




NASA's Contributions to Aeronautics: Aerodynamics, structures, propulsion, controls


Book Description

Two-volume collection of case studies on aspects of NACA-NASA research by noted engineers, airmen, historians, museum curators, journalists, and independent scholars. Explores various aspects of how NACA-NASA research took aeronautics from the subsonic to the hypersonic era.-publisher description.







Aircraft Aerodynamic Design with Computational Software


Book Description

Aerodynamic design of aircraft presented with realistic applications, using CFD software. Tutorials, exercises, and mini-projects provided involve design of real aircraft. Using online resources and supplements, this text prepares last-year undergraduates and first-year graduate students for industrial aerospace design and analysis tasks.