A Survey of Photometric Stereo Techniques


Book Description

Discusses the foundations of this field of research. Summarizes important trends and developments that have emerged in the last three decades. This is an ideal reference for anyone looking for an understanding of the diverse concepts and ideas around this topic and how we can move towards more general techniques than traditional photometric stereo.




A Survey of Photometric Stereo Techniques


Book Description

Reconstructing the shape of an object from images is an important problem in computer vision that has led to a variety of solution strategies. This survey covers photometric stereo, id est, techniques that exploit the observed intensity variations caused by illumination changes to recover the orientation of the surface. In the most basic setting, a diffuse surface is illuminated from at least three directions and captured with a static camera. Under some conditions, this allows to recover per-pixel surface normals. Modern approaches generalize photometric stereo in various ways, e.g., relaxing constraints on lighting, surface reflectance and camera placement or creating different types of local surface estimates. Starting with an introduction for readers unfamiliar with the subject, we discuss the foundations of this field of research. We then summarize important trends and developments that emerged in the last three decades. We put a focus on approaches with the potential to be applied in a broad range of scenarios. This implies, e.g., simple capture setups, relaxed model assumptions, and increased robustness requirements. The goal of this review is to provide an overview of the diverse concepts and ideas on the way towards more general techniques than traditional photometric stereophonic.




Computer Vision – ECCV 2020


Book Description

The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.




Advances in Photometric 3D-Reconstruction


Book Description

This book presents the latest advances in photometric 3D reconstruction. It provides the reader with an overview of the state of the art in the field, and of the latest research into both the theoretical foundations of photometric 3D reconstruction and its practical application in several fields (including security, medicine, cultural heritage and archiving, and engineering). These techniques play a crucial role within such emerging technologies as 3D printing, since they permit the direct conversion of an image into a solid object. The book covers both theoretical analysis and real-world applications, highlighting the importance of deepening interdisciplinary skills, and as such will be of interest to both academic researchers and practitioners from the computer vision and mathematical 3D modeling communities, as well as engineers involved in 3D printing. No prior background is required beyond a general knowledge of classical computer vision models, numerical methods for optimization, and partial differential equations.




Computer Vision


Book Description

Computer Vision: Algorithms and Applications explores the variety of techniques used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both in specialized applications such as image search and autonomous navigation, as well as for fun, consumer-level tasks that students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference takes a scientific approach to the formulation of computer vision problems. These problems are then analyzed using the latest classical and deep learning models and solved using rigorous engineering principles. Topics and features: Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses Incorporates totally new material on deep learning and applications such as mobile computational photography, autonomous navigation, and augmented reality Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects Includes 1,500 new citations and 200 new figures that cover the tremendous developments from the last decade Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, estimation theory, datasets, and software Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.




Neural Information Processing


Book Description

The two-volume set CCIS 1516 and 1517 constitutes thoroughly refereed short papers presented at the 28th International Conference on Neural Information Processing, ICONIP 2021, held in Sanur, Bali, Indonesia, in December 2021.* The volume also presents papers from the workshop on Artificial Intelligence and Cyber Security, held during the ICONIP 2021. The 176 short and workshop papers presented in this volume were carefully reviewed and selected for publication out of 1093 submissions. The papers are organized in topical sections as follows: theory and algorithms; AI and cybersecurity; cognitive neurosciences; human centred computing; advances in deep and shallow machine learning algorithms for biomedical data and imaging; reliable, robust, and secure machine learning algorithms; theory and applications of natural computing paradigms; applications. * The conference was held virtually due to the COVID-19 pandemic.







Computational Imaging


Book Description

A comprehensive and up-to-date textbook and reference for computational imaging, which combines vision, graphics, signal processing, and optics. Computational imaging involves the joint design of imaging hardware and computer algorithms to create novel imaging systems with unprecedented capabilities. In recent years such capabilities include cameras that operate at a trillion frames per second, microscopes that can see small viruses long thought to be optically irresolvable, and telescopes that capture images of black holes. This text offers a comprehensive and up-to-date introduction to this rapidly growing field, a convergence of vision, graphics, signal processing, and optics. It can be used as an instructional resource for computer imaging courses and as a reference for professionals. It covers the fundamentals of the field, current research and applications, and light transport techniques. The text first presents an imaging toolkit, including optics, image sensors, and illumination, and a computational toolkit, introducing modeling, mathematical tools, model-based inversion, data-driven inversion techniques, and hybrid inversion techniques. It then examines different modalities of light, focusing on the plenoptic function, which describes degrees of freedom of a light ray. Finally, the text outlines light transport techniques, describing imaging systems that obtain micron-scale 3D shape or optimize for noise-free imaging, optical computing, and non-line-of-sight imaging. Throughout, it discusses the use of computational imaging methods in a range of application areas, including smart phone photography, autonomous driving, and medical imaging. End-of-chapter exercises help put the material in context.




Frontiers of Computer Vision


Book Description

This book constitutes refereed proceedings of the 28th International Workshop on Frontiers of Computer Vision, IW-FCV 2022, held in Hiroshima, Japan, in February 2022. Due to the COVID-19 pandemic the conference was held online. The 24 full papers presented in this volume were thoroughly reviewed and selected from 63 submissions. The papers are organized according to the following topics: ​camera, 3D, and imaging; learning algorithm; object detection/segmentation; recognition/generation.




Mathematical Methods for Objects Reconstruction


Book Description

The volume collects several contributions to the INDAM workshop Mathematical Methods for Objects Reconstruction: from 3D Vision to 3D Printing held in Rome, February, 2021. The goal of the workshop was to discuss new methods and conceptual structures for managing these challenging problems. The chapters reflect this goal and the authors are academic researchers and some experts from industry working in the areas of 3D modeling, computer vision, 3D printing and/or developing new mathematical methods for these problems. The contributions present methodologies and challenges raised by the emergence of large-scale 3D reconstruction applications and low-cost 3D printers. The volume collects complementary knowledges from different areas of mathematics, computer science and engineering on research topics related to 3D printing, which are, so far, widely unexplored. Young researchers and future scientific leaders in the field of 3D data acquisition, 3D scene reconstruction, and 3D printing software development will find an excellent introduction to these problems and to the mathematical techniques necessary to solve them.