The Selected Papers of Sir John Meurig Thomas


Book Description

John Meurig Thomas is a former Director of the Royal Institution of Great Britain, a former head of the Department of Physical Chemistry and former Master of Peterhouse, University of Cambridge. A world-renowned solid-state, materials and surface chemist, he has been an educator, researcher, academic administrator, author of university texts, government advisor, industrial consultant and trustee of national museums in a career spanning over 50 years. Recipient of many international awards, including the Linus Pauling, Willard–Gibbs, Kapitza, Natta, Stokes, Davy and Faraday medals, he is also a fellow of the Royal Society (1977), of the American Philosophical Society (1993) and of ten other national academies. He is best known for his fundamental work in heterogeneous catalysis, chemical electron microscopy and in the popularisation of science, for which, in conjunction with his services to chemistry, he was knighted (1991). He is also founding editor of three scientific journals and editor or co-editor of some 30 monographs. A new mineral, meurigite, was named in his honour (1995). Most recently in 2016, Sir John was awarded the Royal Medal for Physical Sciences by the Royal Society. Drawn from over 1200 publications, this volume contains a summarised account of Sir John's work, with a selection of the new techniques pioneered and discovered by him and his colleagues. Also included are popular science articles, and various illustrations of techniques which have enhanced our knowledge of many facets of condensed matter science. Contributions from 80 peers, colleagues, former co-workers, students and friends worldwide who have interacted with or been influenced by him are a tribute to the professional and personal life of Sir John, making this book a unique reflective summary of the work of one of the greatest achievers in modern British physical science.




Index Medicus


Book Description

Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.




Turning Points in Solid-state, Materials and Surface State


Book Description

The scientific exploration of solid materials represents one of the most important, fascinating and rewarding areas of scientific endeavour in the present day, not only from the viewpoint of advancing fundamental understanding but also from the industrial perspective, given the immense diversity of applications of solid materials across the full range of commercial sectors. Turning Points in Solid-State, Materials and Surface Science provides a state-of-the-art survey of some of the most important recent developments across the spectrum of solid-state, materials and surface sciences, while at the same time reflecting on key turning points in the evolution of this scientific discipline and projecting into the directions for future research progress. The book serves as a timely tribute to the life and work of Professor Sir John Meurig Thomas FRS, who has made monumental contributions to this field of science throughout his distinguished 50-year career in research, during which he has initiated, developed and exploited many important branches of this field. Indeed, the depth and breadth of his contributions towards the evolution and advancement of this scientific discipline, and his critical role in elevating this field to the important position that it now occupies within modern science, are demonstrated recurrently throughout the chapters of this book. Individual chapters are contributed by internationally leading experts in their respective fields, and the topics covered include solid-state chemistry of inorganic and organic materials, heterogeneous catalysis, surface science and materials science, with one section of the book focusing on modern developments in electron microscopy and its contributions to chemistry and materials science. The book serves as a modern and up-to-date monograph in these fields, and provides a valuable resource to researchers in academia and industry who require a comprehensive source of information on this important and rapidly developing subject.




Turning Points in Solid-State, Materials and Surface Science


Book Description

The scientific exploration of solid materials represents one of the most important, fascinating and rewarding areas of scientific endeavour in the present day, not only from the viewpoint of advancing fundamental understanding but also from the industrial perspective, given the immense diversity of applications of solid materials across the full range of commercial sectors. Turning Points in Solid-State, Materials and Surface Science provides a state-of-the-art survey of some of the most important recent developments across the spectrum of solid-state, materials and surface sciences, while at the same time reflecting on key turning points in the evolution of this scientific discipline and projecting into the directions for future research progress. The book serves as a timely tribute to the life and work of Professor Sir John Meurig Thomas FRS, who has made monumental contributions to this field of science throughout his distinguished 50-year career in research, during which he has initiated, developed and exploited many important branches of this field. Indeed, the depth and breadth of his contributions towards the evolution and advancement of this scientific discipline, and his critical role in elevating this field to the important position that it now occupies within modern science, are demonstrated recurrently throughout the chapters of this book. Individual chapters are contributed by internationally leading experts in their respective fields, and the topics covered include solid-state chemistry of inorganic and organic materials, heterogeneous catalysis, surface science and materials science, with one section of the book focusing on modern developments in electron microscopy and its contributions to chemistry and materials science. The book serves as a modern and up-to-date monograph in these fields, and provides a valuable resource to researchers in academia and industry who require a comprehensive source of information on this important and rapidly developing subject.




Architects of Structural Biology


Book Description

Architects of Structural Biology is an amalgam of memoirs, biography, and intellectual history of the personalities and single-minded devotion of four scientists who are among the greatest in modern times. These three chemists and one physicist, all Nobel laureates, played a pivotal role in the creation of a new and pervasive branch of biology. This led in turn to major developments in medicine and to the treatment of diseases as a result of advances made in arguably one of the greatest centres of scientific research ever: the Laboratory of Molecular Biology in Cambridge, which they helped to establish. Their work and that of their predecessors at the Royal Institution in London reflects the broader cultural, scientific and educational strength of the UK from the early 19th century onwards. The book also illustrates the nurturing of academic life in the collegiate system, exemplified by the activities of, and cross-fertilization within, a small Cambridge college.




Personal And Scientific Reminiscences: Tributes To Ahmed Zewail


Book Description

A compilation of wonderful tributes to the late Ahmed Zewail (1946-2016), considered the 'Father of Femtochemistry', a long-standing icon in the field of physical chemistry, and the father of ultrafast electron-based methods. The book contains testimonies by friends and relatives of Zewail and by outstanding scientists from around the world who worked or have been affiliated with the Nobel prizewinning professor. Each contribution describes the author's own unique experience and personal relationship with Zewail, and includes details of his scientific achievements and the stories around them. Personal and Scientific Reminiscences collects accounts from the most important individuals in the physical and chemical sciences to give us a unique insight into the world and work of one of the great scientists of our time.




Transmission Electron Microscopy


Book Description

This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.




One Hundred Years at the Intersection of Chemistry and Physics


Book Description

This volume, occasioned by the centenary of the Fritz Haber Institute, formerly the Institute for Physical Chemistry and Electrochemistry, covers the institute's scientific and institutional history from its founding until the present. The institute was among the earliest established by the Kaiser Wilhelm Society, and its inauguration was one of the first steps in the development of Berlin-Dahlem into a center for scientific research. Its establishment was made possible by an endowment from Leopold Koppel, granted on the condition that Fritz Haber, well-known for his discovery of a method to synthesize ammonia from its elements, be made its director. The history of the institute has largely paralleled that of 20th-century Germany. It undertook controversial weapons research during World War I, followed by a "Golden Era" during the 1920s, in spite of financial hardships. Under the National Socialists it experienced a purge of its scientific staff and a diversion of its research into the service of the new regime, accompanied by a breakdown in its international relations. In the immediate aftermath of World War II it suffered crippling material losses, from which it recovered slowly in the post-war era. In 1953, shortly after taking the name of its founding director, the institute joined the fledgling Max Planck Society. During the 1950s and 60s, the institute supported diverse researches into the structure of matter and electron microscopy in a territorially insular and politically precarious West-Berlin. In subsequent decades, as both Berlin and the Max Planck Society underwent significant changes, the institute reorganized around a board of coequal scientific directors and a renewed focus on the investigation of elementary processes on surfaces and interfaces, topics of research that had been central to the work of Fritz Haber and the first "Golden Era" of the institute.




Pathways to Modern Chemical Physics


Book Description

In this historical volume Salvatore Califano traces the developments of ideas and theories in physical and theoretical chemistry throughout the 20th century. This seldom-told narrative provides details of topics from thermodynamics to atomic structure, radioactivity and quantum chemistry. Califano’s expertise as a physical chemist allows him to judge the historical developments from the point of view of modern chemistry. This detailed and unique historical narrative is fascinating for chemists working in the fields of physical chemistry and is also a useful resource for science historians who will enjoy access to material not previously dealt with in a coherent way.




4D Electron Microscopy


Book Description

Structural phase transitions, mechanical deformations, and the embryonic stages of melting and crystallization are examples of phenomena that can now be imaged in unprecedented structural detail with high spatial resolution, and ten orders of magnitude as fast as hitherto. No monograph in existence attempts to cover the revolutionary dimensions that EM in its various modes of operation nowadays makes possible. The authors of this book chart these developments, and also compare the merits of coherent electron waves with those of synchrotron radiation. They judge it prudent to recall some important basic procedural and theoretical aspects of imaging and diffraction so that the reader may better comprehend the significance of the new vistas and applications now afoot. This book is not a vade mecum - numerous other texts are available for the practitioner for that purpose.