Mathematical Systems Theory I


Book Description

This book presents the mathematical foundations of systems theory in a self-contained, comprehensive, detailed and mathematically rigorous way. It is devoted to the analysis of dynamical systems and combines features of a detailed introductory textbook with that of a reference source. The book contains many examples and figures illustrating the text which help to bring out the intuitive ideas behind the mathematical constructions.




Mathematics for Algorithm and Systems Analysis


Book Description

Discrete mathematics is fundamental to computer science, and this up-to-date text assists undergraduates in mastering the ideas and mathematical language to address problems that arise in the field's many applications. It consists of 4 units of study: counting and listing, functions, decision trees and recursion, and basic concepts of graph theory.




The Real Number System


Book Description

Concise but thorough and systematic, this categorical discussion of the real number system presents a series of step-by-step axioms, each illustrated by examples. The highly accessible text is suitable for readers at varying levels of knowledge and experience: advanced high school students and college undergraduates as well as prospective high school and college instructors. The abundance of examples and the wealth of exercises—more than 300, all with answers provided—make this a particularly valuable book for self-study. The first two chapters examine fields and ordered fields, followed by an introduction to natural numbers and mathematical induction. Subsequent chapters explore composite and prime numbers, integers and rational numbers, congruences and finite fields, and polynomials and rational functions. Additional topics include intervals and absolute value, the axiom of completeness, roots and rational exponents, exponents and logarithms, and decimal expansions. A helpful Appendix concludes the text.




Mathematics of Complexity and Dynamical Systems


Book Description

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.




The Number System


Book Description

This book explores arithmetic's underlying concepts and their logical development, in addition to a detailed, systematic construction of the number systems of rational, real, and complex numbers. 1956 edition.




Mathematica


Book Description




General Systems Theory: Mathematical Foundations


Book Description

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering




Mathematics as a Cultural System


Book Description

Mathematics as a Cultural System discusses the relationship between mathematics and culture. The book is comprised of eight chapters discussing topics that support the concept of mathematics as a cultural system. Chapter I deals with the nature of culture and cultural systems, while Chapter 2 provides examples of cultural patterns observable in the evolution of mechanics. Chapter III treats historical episodes as a laboratory for the illustration of patterns and forces that have been operative in cultural change. Chapter IV covers hereditary stress, and Chapter V discusses consolidation as a force and process. Chapter VI talks about the singularities in the evolution of mechanics, while Chapter 7 deals with the laws governing the evolution of mathematics. Chapter VIII tackles the role and future of mathematics. The book will be of great interest to readers who are curious about how mathematics relates to culture.




The Trachtenberg Speed System of Basic Mathematics


Book Description

Do high-speed, complicated arithmetic in your head using the Trachtenberg Speed System. Ever find yourself struggling to check a bill or a payslip? With The Trachtenberg Speed System you can. Described as the 'shorthand of mathematics', the Trachtenberg system only requires the ability to count from one to eleven. Using a series of simplified keys it allows anyone to master calculations, giving greater speed, ease in handling numbers and increased accuracy. Jakow Trachtenberg believed that everyone is born with phenomenal abilities to calculate. He devised a set of rules that allows every child to make multiplication, division, addition, subtraction and square-root calculations with unerring accuracy and at remarkable speed. It is the perfect way to gain confidence with numbers.




Number Systems


Book Description

This book offers a rigorous and coherent introduction to the five basic number systems of mathematics, namely natural numbers, integers, rational numbers, real numbers, and complex numbers. It is a subject that many mathematicians believe should be learned by any student of mathematics including future teachers. The book starts with the development of Peano arithmetic in the first chapter which includes mathematical induction and elements of recursion theory. It proceeds to an examination of integers that also covers rings and ordered integral domains. The presentation of rational numbers includes material on ordered fields and convergence of sequences in these fields. Cauchy and Dedekind completeness properties of the field of real numbers are established, together with some properties of real continuous functions. An elementary proof of the Fundamental Theorem of Algebra is the highest point of the chapter on complex numbers. The great merit of the book lies in its extensive list of exercises following each chapter. These exercises are designed to assist the instructor and to enhance the learning experience of the students