Nitrogen Turnover in the Soil-Crop System


Book Description

In the Netherlands the Institute for Soil Fertility Research plays a major role in soil biological, soil physical and plant nutritional research on the availability of nitrogen to crops. Main subjects of research are nitrogen turnover in the crop-soil ecosystem through biological transformations, nitrogen transport through the soil and nitrogen losses by leaching, denitrification and volatilization, and nitrogen use efficiency of various crops and cropping systems. The current knowledge in the different fields of research is integrated in simulation models. Simulation models not only make it possible to summarize and structure knowledge, but also, after verification, to extra- late the knowledge to situations different from the situations that have actually been studied. Such research is also carried out in other European and non-European countries. To compare the various simulation models currently in use, a workshop was organized by the Institute for Soil Fertility Research on 5-6 June 1990 on the occasion of its centennial. The title of the workshop was 'Nitrogen turnover in the soil-crop ::cosystem: modelling of biological transformations, transport of nitrogen and nitrogen use efficiency'. The 40 Jarticipants, who came from Canada and various European countries, were requested to run their model with data Jrovided by the Institute prior to the workshop. Data from 18 cases were made available to the participants: three ocations, three treatments, and two seasons.




Nitrogen in Agricultural Systems


Book Description

Review of the principles and management implications related to nitrogen in the soil-plant-water system.




Nitrogen in the Environment: Sources, Problems and Management


Book Description

Nitrogen in the Environment: Sources, Problems, and Management is the first volume to provide a holistic perspective and comprehensive treatment of nitrogen from field, to ecosystem, to treatment of urban and rural drinking water supplies, while also including a historical overview, human health impacts and policy considerations. It provides a worldwide perspective on nitrogen and agriculture. Nitrogen is one of the most critical elements required in agricultural systems for the production of crops for feed, food and fiber. The ever-increasing world population requires increasing use of nitrogen in agriculture to supply human needs for dietary protein. Worldwide demand for nitrogen will increase as a direct response to increasing population. Strategies and perspectives are considered to improve nitrogen-use efficiency. Issues of nitrogen in crop and human nutrition, and transport and transformations along the continuum from farm field to ground water, watersheds, streams, rivers, and coastal marine environments are discussed. Described are aerial transport of nitrogen from livestock and agricultural systems and the potential for deposition and impacts. The current status of nitrogen in the environment in selected terrestrial and coastal environments and crop and forest ecosystems and development of emerging technologies to minimize nitrogen impacts on the environment are addressed. The nitrogen cycle provides a framework for assessing broad scale or even global strategies to improve nitrogen use efficiency. Growing human populations are the driving force that requires increased nitrogen inputs. These increasing inputs into the food-production system directly result in increased livestock and human-excretory nitrogen contribution into the environment. The scope of this book is diverse, covering a range of topics and issues from furthering our understanding of nitrogen in the environment to policy considerations at both farm and national scales.










Modeling Nitrogen Transport and Transformations in High Water Table Soils


Book Description

Development of management practices that reduce nitrogen (N) losses from agricultural lands has been the focus of research over many years. Development and testing of such practices is a complex task since it requires understanding of N dynamics in the soil-water-plant system, which is regulated by a large number of interacting physical, chemical, and biological processes. Nitrogen models are useful tools for developing and evaluating management practices for sustainable agriculture. The model, DRAINMOD-N was originally developed to simulate N dynamics in artificially drained soils. However, the model was based on a simplified N cycle, which restricted its applicability. A new version of DRAINMOD-N, referred to as DRAINMOD-N II, was developed and field-tested in this study. DRAINMOD-N II simulates N dynamics and turnover in the soil-water-plant system under different management practices and soil conditions. It considers a detailed N cycle, adds a simplified carbon cycle, and operates at different levels of complexity according to the conditions of the system being simulated. Processes considered in the model are atmospheric deposition, application of mineral N fertilizers, soil amendment with organic N sources, plant uptake, mineralization, immobilization, nitrification, denitrification, ammonia volatilization, and N losses due to leaching and surface runoff. DRAINMOD-N II driving hydrologic variables are predicted by the water management model DRAINMOD 5.1. DRAINMOD-N II was tested with a six-year data set from the North Carolina Lower Coastal Plain. The experimental site consists of eight 1.7-hectare instrumented, subsurface drained plots. The site was planted to a corn-wheat-soybean rotation. Water table depth (WTD) midway between the drains, subsurface drainage flow rates, and meteorological data were automatically measured and recorded. Flow proportional drainage water quality samples were collected and analyzed to determine N concentrations and loads. Results.







CRREL Benchnotes


Book Description