A Taste of Topology


Book Description

This should be a revelation for mathematics undergraduates. Having evolved from Runde’s notes for an introductory topology course at the University of Alberta, this essential text provides a concise introduction to set-theoretic topology, as well as some algebraic topology. It is accessible to undergraduates from the second year on, and even beginning graduate students can benefit from some sections. The well-chosen selection of examples is accessible to students who have a background in calculus and elementary algebra, but not necessarily in real or complex analysis. In places, Runde’s text treats its material differently to other books on the subject, providing a fresh perspective.




Experiments in Topology


Book Description

Classic, lively explanation of one of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map coloring, problem of the Koenigsberg bridges, much more, described with clarity and wit.




A Taste of Topology


Book Description

This should be a revelation for mathematics undergraduates. Having evolved from Runde’s notes for an introductory topology course at the University of Alberta, this essential text provides a concise introduction to set-theoretic topology, as well as some algebraic topology. It is accessible to undergraduates from the second year on, and even beginning graduate students can benefit from some sections. The well-chosen selection of examples is accessible to students who have a background in calculus and elementary algebra, but not necessarily in real or complex analysis. In places, Runde’s text treats its material differently to other books on the subject, providing a fresh perspective.




Classical Topology and Combinatorial Group Theory


Book Description

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.




Topology from the Differentiable Viewpoint


Book Description

This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.




Elementary Topology


Book Description

This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.




Selected Applications of Geometry to Low-Dimensional Topology


Book Description

Based on lectures presented at Pennsylvania State University in February 1987, this work begins with the notions of manifold and smooth structures and the Gauss-Bonnet theorem, and proceeds to the topology and geometry of foliated 3-manifolds. It also explains why four-dimensional space has special attributes.




A Concise Course in Algebraic Topology


Book Description

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.




Winding Around


Book Description

The winding number is one of the most basic invariants in topology. It measures the number of times a moving point P goes around a fixed point Q, provided that P travels on a path that never goes through Q and that the final position of P is the same as its starting position. This simple idea has far-reaching applications. The reader of this book will learn how the winding number can help us show that every polynomial equation has a root (the fundamental theorem of algebra),guarantee a fair division of three objects in space by a single planar cut (the ham sandwich theorem),explain why every simple closed curve has an inside and an outside (the Jordan curve theorem),relate calculus to curvature and the singularities of vector fields (the Hopf index theorem),allow one to subtract infinity from infinity and get a finite answer (Toeplitz operators),generalize to give a fundamental and beautiful insight into the topology of matrix groups (the Bott periodicity theorem). All these subjects and more are developed starting only from mathematics that is common in final-year undergraduate courses.




Introduction to Topology


Book Description

The fundamental concepts of general topology are covered in this text whic can be used by students with only an elementary background in calculus. Chapters cover: sets; functions; topological spaces; subspaces; and homeomorphisms.