Molecular Biology and Biotechnology


Book Description

A study of recent developments in molecular biology and biotechnology, including enzyme technology, genetics and various applications, for example in fermentation technology, protein technology, genetic engineering and product recovery.




Recombinant DNA and Biotechnology


Book Description

Written in clear, easy–to–understand language, this best–selling reference text and activities manual offers easy–to–implement lessons and classroom activities. Part I covers basic molecular biology, and Part II offers imaginative dry labs and wet labs that can be done by both college and precollege students. Part III is an innovative section addressing the social issues and public concerns of biotechnology. Extensive appendixes provide important background information on basic laboratory techniques and teaching resources, including overhead masters and templates. Adopted by numerous school systems, this unique book is an outgrowth of molecular biology and biotechnology teaching workshops. All of the exercises and lab activities have been extensively tested in the classroom by hundreds of high school teachers. Recombinant DNA and Biotechnology is designed to interest an international teaching audience and will enable all instructors to teach a reasonable amount of molecular biology and genetic engineering to students. No other book makes it so easy or compelling for teachers to incorporate the "new biology" into their biology, biological sciences, or general science curriculum. Recombinant DNA and Biotechnology: A Guide for Teachers will enable college and precollege teachers to plan and conduct an exciting and contemporary course on the basic principles, essential laboratory activities, and relevant social issues and concerns attendant to today′s molecular biology revolution. In addition to the complete text of the student edition, A Guide for Teachers also contains the answers to all discussion questions and extra background information and material on the scientific principles involved.




Molecular Biology and Biotechnology


Book Description

This is one volume 'library' of information on molecular biology, molecular medicine, and the theory and techniques for understanding, modifying, manipulating, expressing, and synthesizing biological molecules, conformations, and aggregates. The purpose is to assist the expanding number of scientists entering molecular biology research and biotechnology applications from diverse backgrounds, including biology and medicine, as well as physics, chemistry, mathematics, and engineering.




Calculations for Molecular Biology and Biotechnology


Book Description

Calculations for Molecular Biology and Biotechnology: A Guide to Mathematics in the Laboratory, Second Edition, provides an introduction to the myriad of laboratory calculations used in molecular biology and biotechnology. The book begins by discussing the use of scientific notation and metric prefixes, which require the use of exponents and an understanding of significant digits. It explains the mathematics involved in making solutions; the characteristics of cell growth; the multiplicity of infection; and the quantification of nucleic acids. It includes chapters that deal with the mathematics involved in the use of radioisotopes in nucleic acid research; the synthesis of oligonucleotides; the polymerase chain reaction (PCR) method; and the development of recombinant DNA technology. Protein quantification and the assessment of protein activity are also discussed, along with the centrifugation method and applications of PCR in forensics and paternity testing. - Topics range from basic scientific notations to complex subjects like nucleic acid chemistry and recombinant DNA technology - Each chapter includes a brief explanation of the concept and covers necessary definitions, theory and rationale for each type of calculation - Recent applications of the procedures and computations in clinical, academic, industrial and basic research laboratories are cited throughout the text New to this Edition: - Updated and increased coverage of real time PCR and the mathematics used to measure gene expression - More sample problems in every chapter for readers to practice concepts




Molecular Biotechnology


Book Description

The second edition explains the principles of recombinant DNA technology as well as other important techniques such as DNA sequencing, the polymerase chain reaction, and the production of monclonal antibodies.




Dictionary of Plant Genetics and Molecular Biology


Book Description

In the Dictionary of Plant Genetics and Molecular Biology, more than 3,500 technical terms from the fields of plant genetics and molecular biology are defined for students, teachers, and researchers in universities, institutes, and agricultural research stations. An excellent educational tool that will save you time and effort, this dictionary brings together into a single source the meaning and origin of terms from the fields of classical genetics, molecular genetics, mutagenesis, population genetics, statistics, plant biotechnology, evolutionary genetics, plant breeding, and plant biotechnology. Finding and understanding the precise meaning of many terms in genetics is crucial to understanding the foundation of the subject matter. For reasons of space, the glossaries provided at the end of most textbooks are highly inadequate. There is, then, dire need for a dictionary of terms in a single volume. You?ll appreciate the helpful approaches and features of Dictionary of Plant Genetics and Molecular Biology, including: no terms that are of limited use, very general, or self-explanatory cross references for effective access to the materials and economy of space alternate names of terms, denoted with “Also referred to as . . .” or “Also known as . . .” multiple definitions for terms defined by different authors or for terms with different meanings in different contexts authors who coined, described, or contributed toward further understanding of a term are listed and respective publications are included in the Bibliography At last, there is compiled in a single volume the technical terms you need to know in order to understand plant genetics and molecular biology. As your knowledge grows, you?ll uncover even more terms that you need to understand. You?ll find yourself turning to this handy guide time and time again for help on all levels.




Biotechnology for Beginners


Book Description

Biotechnology for Beginners, Third Edition presents the latest developments in the evolving field of biotechnology which has grown to such an extent over the past few years that increasing numbers of professional's work in areas that are directly impacted by the science. This book offers an exciting and colorful overview of biotechnology for professionals and students in a wide array of the life sciences, including genetics, immunology, biochemistry, agronomy and animal science. This book will also appeals to lay readers who do not have a scientific background but are interested in an entertaining and informative introduction to the key aspects of biotechnology. Authors Renneberg and Loroch discuss the opportunities and risks of individual technologies and provide historical data in easy-to-reference boxes, highlighting key topics. The book covers all major aspects of the field, from food biotechnology to enzymes, genetic engineering, viruses, antibodies, and vaccines, to environmental biotechnology, transgenic animals, analytical biotechnology, and the human genome. - Covers the whole of biotechnology - Presents an extremely accessible style, including lavish and humorous illustrations throughout - Includes new chapters on CRISPR cas-9, COVID-19, the biotechnology of cancer, and more




Genetics and Biotechnology


Book Description

Mycology, the study of fungi, originated as a subdiscipline of botany and was a descriptive discipline, largely neglected as an experimental science until the early years of this century. A seminal paper by Blakeslee in 1904 provided evidence for self incompatibility, termed "heterothallism", and stimulated interest in studies related to the control of sexual reproduction in fungi by mating-type specificities. Soon to follow was the demonstration that sexually reproducing fungi exhibit Mendelian inheritance and that it was possible to conduct formal genetic analysis with fungi. The names Burgeff, Kniep and Lindegren are all associated with this early period of fungal genetics research. These studies and the discovery of penicillin by Fleming, who shared a Nobel Prize in 1945, provided further impetus for experimental research with fungi. Thus began a period of interest in mutation induction and analysis of mutants for bio chemical traits. Such fundamental research, conducted largely with Neurospora crassa, led to the one gene: one enzyme hypothesis and to a second Nobel Prize for fungal research awarded to Beadle and Tatum in 1958. Fundamental research in biochemical genetics was extended to other fungi, especially to Saccharomyces cere visiae, and by the mid-1960s fungal systems were much favored for studies in eukaryotic molecular biology and were soon able to compete with bacterial systems in the molecular arena.




Zero to Genetic Engineering Hero


Book Description

Zero to Genetic Engineering Hero is made to provide you with a first glimpse of the inner-workings of a cell. It further focuses on skill-building for genetic engineering and the Biology-as-a-Technology mindset (BAAT). This book is designed and written for hands-on learners who have little knowledge of biology or genetic engineering. This book focuses on the reader mastering the necessary skills of genetic engineering while learning about cells and how they function. The goal of this book is to take you from no prior biology and genetic engineering knowledge toward a basic understanding of how a cell functions, and how they are engineered, all while building the skills needed to do so.