Hydrometallurgy


Book Description

This book is concerned with the theoretical principles of hydrometallurgical processes and engineering aspects. The hydrometallurgical processes of production of copper are discussed and leaching of chalcopyrite as the main sulphide mineral of copper processed in industry is used as an example. The book is suitable as a university textbook for students of metallurgy. - Examines the different techniques involved - Discusses the production of specific metals using hydrometalluric processes - Looks at the future of hydrometallurgy




Hydrometallurgy


Book Description

"This book provides a college-level overview of chemical processing of metals in water-based solutions, in the field that is known as hydrometallurgy"--




Chemical Hydrometallurgy


Book Description

This book is based on the undergraduate and MSc courses in hydrometallurgy which Professor A R Burkin gave from 1961 until he retired in 1988. It is divided into two sections. The first deals with the fundamental chemical and physical principles on which the technology is based. In the second, processes which are used for the production of individual metals are described, in terms of those principles where appropriate.




Hydrometallurgy


Book Description

This book is a printed edition of the Special Issue "Hydrometallurgy" that was published in Metals




SME Mineral Processing and Extractive Metallurgy Handbook


Book Description

This landmark publication distills the body of knowledge that characterizes mineral processing and extractive metallurgy as disciplinary fields. It will inspire and inform current and future generations of minerals and metallurgy professionals. Mineral processing and extractive metallurgy are atypical disciplines, requiring a combination of knowledge, experience, and art. Investing in this trove of valuable information is a must for all those involved in the industry—students, engineers, mill managers, and operators. More than 192 internationally recognized experts have contributed to the handbook’s 128 thought-provoking chapters that examine nearly every aspect of mineral processing and extractive metallurgy. This inclusive reference addresses the magnitude of traditional industry topics and also addresses the new technologies and important cultural and social issues that are important today. Contents Mineral Characterization and AnalysisManagement and ReportingComminutionClassification and WashingTransport and StoragePhysical SeparationsFlotationSolid and Liquid SeparationDisposalHydrometallurgyPyrometallurgyProcessing of Selected Metals, Minerals, and Materials




Physical Chemistry of Metallurgical Processes


Book Description

This book covers various metallurgical topics, viz. roasting of sulfide minerals, matte smelting, slag, reduction of oxides and reduction smelting, interfacial phenomena, steelmaking, secondary steelmaking, role of halides in extraction of metals, refining, hydrometallurgy and electrometallurgy. Each chapter is illustrated with appropriate examples of applications of the technique in extraction of some common, reactive, rare or refractory metal together with worked out problems explaining the principle of the operation.




Lithium Process Chemistry


Book Description

Lithium Process Chemistry: Resources, Extraction, Batteries and Recycling presents, for the first time, the most recent developments and state-of-the-art of lithium production, lithium-ion batteries, and their recycling. The book provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries, including terminology related to these two fields. It is of particular interest to electrochemists who usually have no knowledge in hydrometallurgy and hydrometallurgists not familiar with electrochemistry applied to Li-ion batteries. It is also useful for both teachers and students, presenting an overview on Li production, Li-ion battery technologies, and lithium battery recycling processes that is accompanied by numerous graphical presentations of different battery systems and their electrochemical performances. The book represents the first time that hydrometallurgy and electrochemistry on lithium-ion batteries are assembled in one unique source. - Provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries - Represents the first time that hydrometallurgy and electrochemistry on lithium-ion batteries are assembled in one unique source. - Ideal for both electrochemists who usually have no knowledge in hydrometallurgy and hydrometallurgists not familiar with electrochemistry applied to Li-ion batteries - Presents recent developments, as well as challenges in lithium production and lithium-ion battery technologies and their recycling - Covers examples of Li processes production with schematics, also including numerous graphical presentations of different battery systems and their electrochemical performances




Principles of Extractive Metallurgy


Book Description

Rather than simply describing the processes and reactions involved in metal extraction, this book concentrates on fundamental principles to give readers an understanding of the possibilities for future developments in this field. It includes a review of the basics of thermodynamics, kinetics and engineering principles that have special importance for extractive metallurgy, to ensure that readers have the background necessary for maximum achievement. The various metallurgical unit processes (such as roasting, reduction, smelting and electrolysis) are illustrated by existing techniques for the extraction of the most common metals. Each chapter includes a bibliography of recommended reading, to aid in further study. The appendices include tables and graphs of thermodynamic qualities for most substances of metallurgical importance; these are ideal for calculating heat (enthalpy) balances and chemical equilibrium constants. SI Units are used consistently throughout the text.




Principles of Mineral Processing


Book Description

This comprehensive reference examines all aspects of mineral processing, from the handling of raw materials to separation strategies to the remediation of waste products. It incorporates state-of-the-art developments in the fields of engineering, chemistry, computer science, and environmental science.