Handbook of HydroInformatics


Book Description

Classic Soft-Computing Techniques is the first volume of the three, in the Handbook of HydroInformatics series.? Through this comprehensive, 34-chapters work, the contributors explore the difference between traditional computing, also known as hard computing, and soft computing, which is based on the importance given to issues like precision, certainty and rigor. The chapters go on to define fundamentally classic soft-computing techniques such as Artificial Neural Network, Fuzzy Logic, Genetic Algorithm, Supporting Vector Machine, Ant-Colony Based Simulation, Bat Algorithm, Decision Tree Algorithm, Firefly Algorithm, Fish Habitat Analysis, Game Theory, Hybrid Cuckoo–Harmony Search Algorithm, Honey-Bee Mating Optimization, Imperialist Competitive Algorithm, Relevance Vector Machine, etc.?It is a fully comprehensive handbook providing all the information needed around classic soft-computing techniques. This volume is a true interdisciplinary work, and the audience includes postgraduates and early career researchers interested in Computer Science, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources, and Chemical Engineering. Key insights from global contributors in the fields of data management research, climate change and resilience, insufficient data problem, etc. Offers applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. Introduces classic soft-computing techniques, necessary for a range of disciplines.




Theinfluence of the Cross Section Shape on Channel Flow: Modeling, Simulation and Experiment


Book Description

Physical models of physiological flow-induced phenomena, such as blood flow through a stenosis or air flow during human speech production, often rely on a quasi-one-dimensional or two-dimensional flow model, so that details of the cross section shape are neglected. Nevertheless, boundary layer development is known to depend on the cross section shape. The aim of this thesis is to model, simulate and characterize the potential impact of the cross section shape for pressure-driven laminar channel flow without and with constriction. Stretched coordinates are introduced to obtain viscous flow solutions for channels with an arbitrary cross section. The proposed cross section shape parametrization is applied to solve physical equations for two-dimensional and three-dimensional shapes. A simplified quasi-three-dimensional flow model, which accounts for kinetic losses, viscosity and the cross section shape, is presented and applied to describe the flow through a stenosis. Finally, flow data are gathered experimentally and numerically in order to characterize the influence of the cross section shape in the case of a constricted channel. Modeled, experimental and numerical data are compared.




NBS Special Publication


Book Description