Recent Advances in DNS and LES


Book Description

This collection of papers presents a broad range of topics in DNS and LES, from new developments in LES modeling to DNS and LES for supersonic and hypersonic boundary layers. The book provides an extensive view of the state of the art in the field.










Spectral Methods in Fluid Dynamics


Book Description

This is a book about spectral methods for partial differential equations: when to use them, how to implement them, and what can be learned from their of spectral methods has evolved rigorous theory. The computational side vigorously since the early 1970s, especially in computationally intensive of the more spectacular applications are applications in fluid dynamics. Some of the power of these discussed here, first in general terms as examples of the methods have been methods and later in great detail after the specifics covered. This book pays special attention to those algorithmic details which are essential to successful implementation of spectral methods. The focus is on algorithms for fluid dynamical problems in transition, turbulence, and aero dynamics. This book does not address specific applications in meteorology, partly because of the lack of experience of the authors in this field and partly because of the coverage provided by Haltiner and Williams (1980). The success of spectral methods in practical computations has led to an increasing interest in their theoretical aspects, especially since the mid-1970s. Although the theory does not yet cover the complete spectrum of applications, the analytical techniques which have been developed in recent years have facilitated the examination of an increasing number of problems of practical interest. In this book we present a unified theory of the mathematical analysis of spectral methods and apply it to many of the algorithms in current use.










The Illiac IV


Book Description

The Illiac IV was the first large scale array computer. As the fore runner of today's advanced computers, it brought whole classes of scientific computations into the realm of practicality. Conceived initially as a grand experiment in computer science, the revolutionary architecture incorporated both a high level of parallelism and pipe lining. After a difficult gestation, the Illiac IV became operational in November 1975. It has for a decade been a substantial driving force behind the develooment of computer technology. Today the Illiac IV continues to service large-scale scientific aoolication areas includ ing computational fluid dynamics, seismic stress wave propagation model ing, climate simulation, digital image processing, astrophysics, numerical analysis, spectroscopy and other diverse areas. This volume brings together previously published material, adapted in an effort to provide the reader with a perspective on the strengths and weaknesses of the Illiac IV and the impact this unique computa tional resource has had on the development of technology. The history and current status of the Illiac system, the design and architecture of the hardware, the programming languages, and a considerable sampling of applications are all covered at some length. A final section is devoted to commentary.