A Treatise on the Analytical Dynamics of Particles and Rigid Bodies


Book Description

This classic book is a encylopaedic and comprehensive account of the classical theory of analytical dynamics. The treatment is rigorous yet readable, starting from first principles with kinematics before moving to equations of motion and specific and explicit methods for solving them, with chapters devoted to particle dyanmics, rigid bodies, vibration, and dissipative systems. Hamilton's principle is introduced and then applied to dynamical systems, including three-body systems and celestial mechanics. Very many examples and exercisies are supplied throughout.




Analytical Mechanics


Book Description

This is a comprehensive, state-of-the-art, treatise on the energetic mechanics of Lagrange and Hamilton, that is, classical analytical dynamics, and its principal applications to constrained systems (contact, rolling, and servoconstraints). It is a book on advanced dynamics from a unified viewpoint, namely, the kinetic principle of virtual work, or principle of Lagrange. As such, it continues, renovates, and expands the grand tradition laid by such mechanics masters as Appell, Maggi, Whittaker, Heun, Hamel, Chetaev, Synge, Pars, Luré, Gantmacher, Neimark, and Fufaev. Many completely solved examples complement the theory, along with many problems (all of the latter with their answers and many of them with hints). Although written at an advanced level, the topics covered in this 1400-page volume (the most extensive ever written on analytical mechanics) are eminently readable and inclusive. It is of interest to engineers, physicists, and mathematicians; advanced undergraduate and graduate students and teachers; researchers and professionals; all will find this encyclopedic work an extraordinary asset; for classroom use or self-study. In this edition, corrections (of the original edition, 2002) have been incorporated.




Tensor Calculus and Analytical Dynamics


Book Description

Tensor Calculus and Analytical Dynamics provides a concise, comprehensive, and readable introduction to classical tensor calculus - in both holonomic and nonholonomic coordinates - as well as to its principal applications to the Lagrangean dynamics of discrete systems under positional or velocity constraints. The thrust of the book focuses on formal structure and basic geometrical/physical ideas underlying most general equations of motion of mechanical systems under linear velocity constraints. Written for the theoretically minded engineer, Tensor Calculus and Analytical Dynamics contains uniquely accessbile treatments of such intricate topics as: tensor calculus in nonholonomic variables Pfaffian nonholonomic constraints related integrability theory of Frobenius The book enables readers to move quickly and confidently in any particular geometry-based area of theoretical or applied mechanics in either classical or modern form.




Advanced Analytical Dynamics


Book Description

Intended for graduate students, this textbook provides an understanding of the theoretical underpinnings of analytical mechanics, as well as modern task-based approaches that can be exploited for real-world problems. Students will receive a timely perspective on applying theory to modern problems in areas like biomechanics and robotics.




Analytical Mechanics


Book Description

This is a translation of A.I. Lurie’s classical Russian textbook on analytical mechanics. It offers a consummate exposition of the subject of analytical mechanics through a deep analysis of its most fundamental concepts. The book has served as a desk text for at least two generations of researchers working in those fields where the Soviet Union accomplished the greatest technological breakthrough of the 20th century - a race into space. Those and other related fields continue to be intensively explored since then, and the book clearly demonstrates how the fundamental concepts of mechanics work in the context of up-to-date engineering problems.




Analytical Mechanics


Book Description

The Mécanique analytique presents a comprehensive account of Lagrangian mechanics. In this work, Lagrange used the Principle of Virtual Work in conjunction with the Lagrangian Multiplier to solve all problems of statics. For the treatment of dynamics, a third concept had to be added to the first two - d'Alembert's Principle - in order to develop the Lagrangian equations of motion. Hence, Lagrange was able to unify the entire science of mechanics using only three concepts and algebraic operations.




Analytical Mechanics: A Comprehensive Treatise On The Dynamics Of Constrained Systems (Reprint Edition)


Book Description

This is a comprehensive, state-of-the-art, treatise on the energetic mechanics of Lagrange and Hamilton, that is, classical analytical dynamics, and its principal applications to constrained systems (contact, rolling, and servoconstraints). It is a book on advanced dynamics from a unified viewpoint, namely, the kinetic principle of virtual work, or principle of Lagrange. As such, it continues, renovates, and expands the grand tradition laid by such mechanics masters as Appell, Maggi, Whittaker, Heun, Hamel, Chetaev, Synge, Pars, Luré, Gantmacher, Neimark, and Fufaev. Many completely solved examples complement the theory, along with many problems (all of the latter with their answers and many of them with hints). Although written at an advanced level, the topics covered in this 1400-page volume (the most extensive ever written on analytical mechanics) are eminently readable and inclusive. It is of interest to engineers, physicists, and mathematicians; advanced undergraduate and graduate students and teachers; researchers and professionals; all will find this encyclopedic work an extraordinary asset; for classroom use or self-study. In this edition, corrections (of the original edition, 2002) have been incorporated.




Analytical Mechanics


Book Description

Is the solar system stable? Is there a unifying 'economy' principle in mechanics? How can a pointmass be described as a 'wave'? This book offers students an understanding of the most relevant and far reaching results of the theory of Analytical Mechanics, including plenty of examples, exercises, and solved problems.