Strategic Asset Allocation


Book Description

Academic finance has had a remarkable impact on many financial services. Yet long-term investors have received curiously little guidance from academic financial economists. Mean-variance analysis, developed almost fifty years ago, has provided a basic paradigm for portfolio choice. This approach usefully emphasizes the ability of diversification to reduce risk, but it ignores several critically important factors. Most notably, the analysis is static; it assumes that investors care only about risks to wealth one period ahead. However, many investors—-both individuals and institutions such as charitable foundations or universities—-seek to finance a stream of consumption over a long lifetime. In addition, mean-variance analysis treats financial wealth in isolation from income. Long-term investors typically receive a stream of income and use it, along with financial wealth, to support their consumption. At the theoretical level, it is well understood that the solution to a long-term portfolio choice problem can be very different from the solution to a short-term problem. Long-term investors care about intertemporal shocks to investment opportunities and labor income as well as shocks to wealth itself, and they may use financial assets to hedge their intertemporal risks. This should be important in practice because there is a great deal of empirical evidence that investment opportunities—-both interest rates and risk premia on bonds and stocks—-vary through time. Yet this insight has had little influence on investment practice because it is hard to solve for optimal portfolios in intertemporal models. This book seeks to develop the intertemporal approach into an empirical paradigm that can compete with the standard mean-variance analysis. The book shows that long-term inflation-indexed bonds are the riskless asset for long-term investors, it explains the conditions under which stocks are safer assets for long-term than for short-term investors, and it shows how labor income influences portfolio choice. These results shed new light on the rules of thumb used by financial planners. The book explains recent advances in both analytical and numerical methods, and shows how they can be used to understand the portfolio choice problems of long-term investors.




Asset Pricing and Portfolio Choice Theory


Book Description

This book covers the classical results on single-period, discrete-time, and continuous-time models of portfolio choice and asset pricing. It also treats asymmetric information, production models, various proposed explanations for the equity premium puzzle, and topics important for behavioral finance.




Dynamic Portfolio Theory and Management


Book Description

Publisher Description




Dynamic Asset Pricing Theory


Book Description

This is a thoroughly updated edition of Dynamic Asset Pricing Theory, the standard text for doctoral students and researchers on the theory of asset pricing and portfolio selection in multiperiod settings under uncertainty. The asset pricing results are based on the three increasingly restrictive assumptions: absence of arbitrage, single-agent optimality, and equilibrium. These results are unified with two key concepts, state prices and martingales. Technicalities are given relatively little emphasis, so as to draw connections between these concepts and to make plain the similarities between discrete and continuous-time models. Readers will be particularly intrigued by this latest edition's most significant new feature: a chapter on corporate securities that offers alternative approaches to the valuation of corporate debt. Also, while much of the continuous-time portion of the theory is based on Brownian motion, this third edition introduces jumps--for example, those associated with Poisson arrivals--in order to accommodate surprise events such as bond defaults. Applications include term-structure models, derivative valuation, and hedging methods. Numerical methods covered include Monte Carlo simulation and finite-difference solutions for partial differential equations. Each chapter provides extensive problem exercises and notes to the literature. A system of appendixes reviews the necessary mathematical concepts. And references have been updated throughout. With this new edition, Dynamic Asset Pricing Theory remains at the head of the field.




Asset Pricing and Portfolio Choice Theory


Book Description

In Asset Pricing and Portfolio Choice Theory, Kerry E. Back at last offers what is at once a welcoming introduction to and a comprehensive overview of asset pricing. Useful as a textbook for graduate students in finance, with extensive exercises and a solutions manual available for professors, the book will also serve as an essential reference for scholars and professionals, as it includes detailed proofs and calculations as section appendices. Topics covered include the classical results on single-period, discrete-time, and continuous-time models, as well as various proposed explanations for the equity premium and risk-free rate puzzles and chapters on heterogeneous beliefs, asymmetric information, non-expected utility preferences, and production models. The book includes numerous exercises designed to provide practice with the concepts and to introduce additional results. Each chapter concludes with a notes and references section that supplies pathways to additional developments in the field.




Empirical Asset Pricing


Book Description

An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.




Efficient Asset Management


Book Description

In spite of theoretical benefits, Markowitz mean-variance (MV) optimized portfolios often fail to meet practical investment goals of marketability, usability, and performance, prompting many investors to seek simpler alternatives. Financial experts Richard and Robert Michaud demonstrate that the limitations of MV optimization are not the result of conceptual flaws in Markowitz theory but unrealistic representation of investment information. What is missing is a realistic treatment of estimation error in the optimization and rebalancing process. The text provides a non-technical review of classical Markowitz optimization and traditional objections. The authors demonstrate that in practice the single most important limitation of MV optimization is oversensitivity to estimation error. Portfolio optimization requires a modern statistical perspective. Efficient Asset Management, Second Edition uses Monte Carlo resampling to address information uncertainty and define Resampled Efficiency (RE) technology. RE optimized portfolios represent a new definition of portfolio optimality that is more investment intuitive, robust, and provably investment effective. RE rebalancing provides the first rigorous portfolio trading, monitoring, and asset importance rules, avoiding widespread ad hoc methods in current practice. The Second Edition resolves several open issues and misunderstandings that have emerged since the original edition. The new edition includes new proofs of effectiveness, substantial revisions of statistical estimation, extensive discussion of long-short optimization, and new tools for dealing with estimation error in applications and enhancing computational efficiency. RE optimization is shown to be a Bayesian-based generalization and enhancement of Markowitz's solution. RE technology corrects many current practices that may adversely impact the investment value of trillions of dollars under current asset management. RE optimization technology may also be useful in other financial optimizations and more generally in multivariate estimation contexts of information uncertainty with Bayesian linear constraints. Michaud and Michaud's new book includes numerous additional proposals to enhance investment value including Stein and Bayesian methods for improved input estimation, the use of portfolio priors, and an economic perspective for asset-liability optimization. Applications include investment policy, asset allocation, and equity portfolio optimization. A simple global asset allocation problem illustrates portfolio optimization techniques. A final chapter includes practical advice for avoiding simple portfolio design errors. With its important implications for investment practice, Efficient Asset Management 's highly intuitive yet rigorous approach to defining optimal portfolios will appeal to investment management executives, consultants, brokers, and anyone seeking to stay abreast of current investment technology. Through practical examples and illustrations, Michaud and Michaud update the practice of optimization for modern investment management.




Stochastic Programming: Applications In Finance, Energy, Planning And Logistics


Book Description

This book shows the breadth and depth of stochastic programming applications. All the papers presented here involve optimization over the scenarios that represent possible future outcomes of the uncertainty problems. The applications, which were presented at the 12th International Conference on Stochastic Programming held in Halifax, Nova Scotia in August 2010, span the rich field of uses of these models. The finance papers discuss such diverse problems as longevity risk management of individual investors, personal financial planning, intertemporal surplus management, asset management with benchmarks, dynamic portfolio management, fixed income immunization and racetrack betting. The production and logistics papers discuss natural gas infrastructure design, farming Atlantic salmon, prevention of nuclear smuggling and sawmill planning. The energy papers involve electricity production planning, hydroelectric reservoir operations and power generation planning for liquid natural gas plants. Finally, two telecommunication papers discuss mobile network design and frequency assignment problems./a




Multi-Period Trading Via Convex Optimization


Book Description

This monograph collects in one place the basic definitions, a careful description of the model, and discussion of how convex optimization can be used in multi-period trading, all in a common notation and framework.




Asset Pricing and Portfolio Choice Theory


Book Description

In the 2nd edition of Asset Pricing and Portfolio Choice Theory, Kerry E. Back offers a concise yet comprehensive introduction to and overview of asset pricing. Intended as a textbook for asset pricing theory courses at the Ph.D. or Masters in Quantitative Finance level with extensive exercises and a solutions manual available for professors, the book is also an essential reference for financial researchers and professionals, as it includes detailed proofs and calculations as section appendices. The first two parts of the book explain portfolio choice and asset pricing theory in single-period, discrete-time, and continuous-time models. For valuation, the focus throughout is on stochastic discount factors and their properties. A section on derivative securities covers the usual derivatives (options, forwards and futures, and term structure models) and also applications of perpetual options to corporate debt, real options, and optimal irreversible investment. A chapter on "explaining puzzles" and the last part of the book provide introductions to a number of additional current topics in asset pricing research, including rare disasters, long-run risks, external and internal habits, asymmetric and incomplete information, heterogeneous beliefs, and non-expected-utility preferences. Each chapter includes a "Notes and References" section providing additional pathways to the literature. Each chapter also includes extensive exercises.