A Vision for the Future of Center-Based Multidisciplinary Engineering Research


Book Description

Out of concern for the state of engineering in the United States, the National Science Foundation (NSF) created the Engineering Research Centers (ERCs) with the goal of improving engineering research and education and helping to keep the United States competitive in global markets. Since the ERC program's inception in 1985, NSF has funded 67 ERCs across the United States. NSF funds each ERC for up to 10 years, during which time the centers build robust partnerships with industry, universities, and other government entities that can ideally sustain them upon graduation from NSF support. To ensure that the ERCs continue to be a source of innovation, economic development, and educational excellence, NSF commissioned the National Academies of Sciences, Engineering, and Medicine to convene a 1-day symposium in April 2016. This event featured four plenary panel presentations on: the evolving global context for center-based engineering research, trends in undergraduate and graduate engineering education, new directions in university-industry interaction, and emerging best practices in translating university research into innovation. This publication summarizes the presentations and discussions from the symposium.




A New Vision for Center-Based Engineering Research


Book Description

The future security, economic growth, and competitiveness of the United States depend on its capacity to innovate. Major sources of innovative capacity are the new knowledge and trained students generated by U.S. research universities. However, many of the complex technical and societal problems the United States faces cannot be addressed by the traditional model of individual university research groups headed by a single principal investigator. Instead, they can only be solved if researchers from multiple institutions and with diverse expertise combine their efforts. The National Science Foundation (NSF), among other federal agencies, began to explore the potential of such center-scale research programs in the 1970s and 1980s; in many ways, the NSF Engineering Research Center (ERC) program is its flagship program in this regard. The ERCs are "interdisciplinary, multi-institutional centers that join academia, industry, and government in partnership to produce transformational engineered systems and engineering graduates who are adept at innovation and primed for leadership in the global economy. To ensure that the ERCs continue to be a source of innovation, economic development, and educational excellence, A New Vision for Center-Based Engineering Research explores the future of center-based engineering research, the skills needed for effective center leadership, and opportunities to enhance engineering education through the centers.













Educating Engineers: Preparing 21st Century Leaders in the Context of New Modes of Learning


Book Description

The National Academy of Engineering's 2012 forum, "Educating Engineers: Preparing 21st Century Leaders in the Context of New Modes of Learning," opened with presentations by six speakers who looked at the future of engineering and engineering education from their perspectives as educators, administrators, entrepreneurs, and innovators. Each speaker focused on just one facet of a tremendously complex picture. Yet together they outlined a new vision for engineering education based on flexible, interactive, lifelong learning and the merge of activities long held to be distinct. This summary of a forum recaps the six speaker's presentations.




Facilitating Interdisciplinary Research


Book Description

Facilitating Interdisciplinary Research examines current interdisciplinary research efforts and recommends ways to stimulate and support such research. Advances in science and engineering increasingly require the collaboration of scholars from various fields. This shift is driven by the need to address complex problems that cut across traditional disciplines, and the capacity of new technologies to both transform existing disciplines and generate new ones. At the same time, however, interdisciplinary research can be impeded by policies on hiring, promotion, tenure, proposal review, and resource allocation that favor traditional disciplines. This report identifies steps that researchers, teachers, students, institutions, funding organizations, and disciplinary societies can take to more effectively conduct, facilitate, and evaluate interdisciplinary research programs and projects. Throughout the report key concepts are illustrated with case studies and results of the committee's surveys of individual researchers and university provosts.




Understanding the Educational and Career Pathways of Engineers


Book Description

Engineering skills and knowledge are foundational to technological innovation and development that drive long-term economic growth and help solve societal challenges. Therefore, to ensure national competitiveness and quality of life it is important to understand and to continuously adapt and improve the educational and career pathways of engineers in the United States. To gather this understanding it is necessary to study the people with the engineering skills and knowledge as well as the evolving system of institutions, policies, markets, people, and other resources that together prepare, deploy, and replenish the nation's engineering workforce. This report explores the characteristics and career choices of engineering graduates, particularly those with a BS or MS degree, who constitute the vast majority of degreed engineers, as well as the characteristics of those with non-engineering degrees who are employed as engineers in the United States. It provides insight into their educational and career pathways and related decision making, the forces that influence their decisions, and the implications for major elements of engineering education-to-workforce pathways.




Environmental Engineering for the 21st Century


Book Description

Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.




The Engineer of 2020


Book Description

To enhance the nation's economic productivity and improve the quality of life worldwide, engineering education in the United States must anticipate and adapt to the dramatic changes of engineering practice. The Engineer of 2020 urges the engineering profession to recognize what engineers can build for the future through a wide range of leadership roles in industry, government, and academia-not just through technical jobs. Engineering schools should attract the best and brightest students and be open to new teaching and training approaches. With the appropriate education and training, the engineer of the future will be called upon to become a leader not only in business but also in nonprofit and government sectors. The book finds that the next several decades will offer more opportunities for engineers, with exciting possibilities expected from nanotechnology, information technology, and bioengineering. Other engineering applications, such as transgenic food, technologies that affect personal privacy, and nuclear technologies, raise complex social and ethical challenges. Future engineers must be prepared to help the public consider and resolve these dilemmas along with challenges that will arise from new global competition, requiring thoughtful and concerted action if engineering in the United States is to retain its vibrancy and strength.