Book Description
View the abstract.
Author : Swee Hong Chan
Publisher : American Mathematical Society
Page : 104 pages
File Size : 15,32 MB
Release : 2022-04-08
Category : Mathematics
ISBN : 1470451417
View the abstract.
Author : Matthew Bainbridge
Publisher : American Mathematical Society
Page : 112 pages
File Size : 22,26 MB
Release : 2022-11-10
Category : Mathematics
ISBN : 1470455390
View the abstract.
Author : Jacob Bedrossian
Publisher : American Mathematical Society
Page : 148 pages
File Size : 14,66 MB
Release : 2022-08-31
Category : Mathematics
ISBN : 1470472252
View the abstract.
Author : Chris Kottke
Publisher : American Mathematical Society
Page : 124 pages
File Size : 36,97 MB
Release : 2022-11-10
Category : Mathematics
ISBN : 1470455412
View the abstract.
Author : Peter M. Luthy
Publisher : American Mathematical Society
Page : 168 pages
File Size : 36,36 MB
Release : 2022-11-10
Category : Mathematics
ISBN : 1470453746
View the abstract.
Author : Jean-François Chassagneux
Publisher : American Mathematical Society
Page : 136 pages
File Size : 36,3 MB
Release : 2022-11-10
Category : Mathematics
ISBN : 1470453754
View the abstract.
Author : Jenny Fuselier
Publisher : American Mathematical Society
Page : 138 pages
File Size : 23,3 MB
Release : 2022-11-10
Category : Mathematics
ISBN : 1470454335
View the abstract.
Author : Michael Artin
Publisher : American Mathematical Society
Page : 104 pages
File Size : 43,14 MB
Release : 2022-09-21
Category : Mathematics
ISBN : 1470471116
This book is an introduction to the geometry of complex algebraic varieties. It is intended for students who have learned algebra, analysis, and topology, as taught in standard undergraduate courses. So it is a suitable text for a beginning graduate course or an advanced undergraduate course. The book begins with a study of plane algebraic curves, then introduces affine and projective varieties, going on to dimension and constructibility. $mathcal{O}$-modules (quasicoherent sheaves) are defined without reference to sheaf theory, and their cohomology is defined axiomatically. The Riemann-Roch Theorem for curves is proved using projection to the projective line. Some of the points that aren't always treated in beginning courses are Hensel's Lemma, Chevalley's Finiteness Theorem, and the Birkhoff-Grothendieck Theorem. The book contains extensive discussions of finite group actions, lines in $mathbb{P}^3$, and double planes, and it ends with applications of the Riemann-Roch Theorem.
Author : Michael Hitrik
Publisher : American Mathematical Society
Page : 102 pages
File Size : 41,63 MB
Release : 2022-11-10
Category : Mathematics
ISBN : 1470454211
View the abstract.
Author : D. Kaledin
Publisher : American Mathematical Society
Page : 104 pages
File Size : 23,43 MB
Release : 2022-11-10
Category : Mathematics
ISBN : 1470455366
View the abstract.