Aberration Theory Made Simple


Book Description

This book provides a clear, concise, and consistent exposition of what aberrations are, how they arise in optical imaging systems, and how they affect the quality of images formed by them. The emphasis of the book is on physical insight, problem solving, and numerical results, and the text is intended for engineers and scientists who have a need and a desire for a deeper and better understanding of aberrations and their role in optical imaging and wave propagation. Some knowledge of Gaussian optics and an appreciation for aberrations would be useful but is not required.




Introduction to Aberrations in Optical Imaging Systems


Book Description

An accessible, well presented introduction to the theory of optical aberrations, covering key topics that are often missing from comparable books.




Optical Imaging and Aberrations


Book Description

Ten years have passed since the publication of the first edition of this classic text in April 2001. Considerable new material amounting to 100 pages has been added in this second edition. Each chapter now contains a Summary section at the end. The new material in Chapter 4 consists of a detailed comparison of Gaussian apodization with a corresponding beam, determination of the optimum value of the Gaussian radius relative to that of the pupil to yield maximum focal-point irradiance, detailed discussion of standard deviation, aberration balancing, and Strehl ratio for primary aberrations, derivation of the aberration-free and defocused OTF, discussion of an aberrated beam yielding higher axial irradiance in a certain defocused region than its aberration-free focal-point value, illustration that aberrated PSFs lose the advantage of Gaussian apodizaton in reducing the secondary maxima of a PSF, and a brief description of the characterization of the width of a multimode beam. In Chapter 5, the effect of random longitudinal defocus on a PSF is included. The coherence length of atmospheric turbulence is calculated for looking both up and down through the atmosphere. Also discussed are the angle of arrival of a light wave propagating through turbulence, and lucky imaging where better-quality short-exposure images are selected, aligned, and added to obtain a high-quality image.




Aberrations of Optical Systems


Book Description

Although the subject of optical design as a branch of applied physics is over one hundred years old, the use of aberration theory has changed considerably. Aberrations of Optical Systems covers elementary optics and aberration theory of various optical systems, including the use of nonaxially symmetric systems and diffractive optical elements in complex designs, such as head-up displays and the increasing use of scanning systems with laser illumination. The book provides the complete range of mathematical tools, formulae, and derivations needed for understanding the process of optical design and for planning optical design programs. While the treatment is mainly based on geometrical optics, some excursions into physical optics are made, particularly in connection with the problems of optical tolerances.




Lens Design Fundamentals


Book Description

- Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies. This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more. Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner. Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980). R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference. - Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field




Optical Metrology


Book Description

Optical Metrology is a rapidly expanding field i'n both its scientific foundations and technological developments, being of major concern to measurements, quality control, non-destructive tes ting and in fundamental research. In order to define the state-of-the-art, and to evaluate pre sent accomplishments, whilst giving an appraisal of how each of the particular topics will evolve the Optical Metrology-anAdvancedStudy Institute was organized with a concourse of the world's acknowledged experts. Thus, the Institute provided a forum for tutorial reviews blended with topics of current research in the form of a progressive and comprehensive presentation of recent promising developments, lea ding techniques and instrumentation in incoherent and coherent optics for Metrology, Sensing and Control in Science, Industry and Biomedici ne. Optical Metrology is a very broad field which is highly inter disciplinary in its applications, and in its scientific and technolo gical background. It is related to such diverse disciplines as physi cal and chemical sciences, engineering, electronics, computer scien ces, biological sciences and theoretical sciences, such as statistics. Although there was an emphasis on photomechanics and industri al applications, a marked diversity was reflected in the different background and interests of the participants. The vitality and viabi lity of the discipline was enhanced not only by the encouraging number of young scientists and industrialists participating and authoring, but also by the remarkably promising prospects found in x the practical applications supported by advanced electronic hybridi zation.




Fundamentals of Practical Aberration Theory


Book Description

At present, although most of the optical design processes are automated with the aid of computer software, the fundamental question of how we can generate the initial optical configuration such that it can be dealt with by the computer remains. The answer can only be found in applying techniques based on the aberration theory. Previous works have explored this subject matter. None, however, has covered the full extent of first deriving the aberration theory and then illustrating with the help of various kinds of actual examples how it can be applied effectively to practical design problems. This book is significant in its attempt to put theory into practice for the first time to provide new insight and knowledge to its readers.




Optical Imaging and Aberrations: Ray geometrical optics


Book Description

Based on the author's lectures at the University of Southern California, where he teaches a graduate course in optical imaging and aberrations, this volume provides an understanding of how aberrations arise in optical systems and how they affect imaging. Emphasis is placed on the primary aberrations of simple optical systems as a foundation for the design of more complex and high image-quality systems. Each chapter ends with a set of problems. A separate volume (Volume 2) treats imaging based on diffraction. Annotation copyrighted by Book News, Inc., Portland, OR




Modern Optical Engineering


Book Description

A revised version of a text which was first published in 1966. The book is designed as a general reference book for engineers and assumes a broad knowledge of current optical systems and their design. Additional topics include fibre optics, thin films and CAD systems.




Aberrations in Black


Book Description

A hard-hitting look at the regulation of sexual difference and its role in circumscribing African American culture The sociology of race relations in America typically describes an intersection of poverty, race, and economic discrimination. But what is missing from the picture—sexual difference—can be as instructive as what is present. In this ambitious work, Roderick A. Ferguson reveals how the discourses of sexuality are used to articulate theories of racial difference in the field of sociology. He shows how canonical sociology—Gunnar Myrdal, Ernest Burgess, Robert Park, Daniel Patrick Moynihan, and William Julius Wilson—has measured African Americans’s unsuitability for a liberal capitalist order in terms of their adherence to the norms of a heterosexual and patriarchal nuclear family model. In short, to the extent that African Americans’s culture and behavior deviated from those norms, they would not achieve economic and racial equality. Aberrations in Black tells the story of canonical sociology’s regulation of sexual difference as part of its general regulation of African American culture. Ferguson places this story within other stories—the narrative of capital’s emergence and development, the histories of Marxism and revolutionary nationalism, and the novels that depict the gendered and sexual idiosyncrasies of African American culture—works by Richard Wright, Ralph Ellison, James Baldwin, Audre Lorde, and Toni Morrison. In turn, this book tries to present another story—one in which people who presumably manifest the dysfunctions of capitalism are reconsidered as indictments of the norms of state, capital, and social science. Ferguson includes the first-ever discussion of a new archival discovery—a never-published chapter of Invisible Man that deals with a gay character in a way that complicates and illuminates Ellison’s project. Unique in the way it situates critiques of race, gender, and sexuality within analyses of cultural, economic, and epistemological formations, Ferguson’s work introduces a new mode of discourse—which Ferguson calls queer of color analysis—that helps to lay bare the mutual distortions of racial, economic, and sexual portrayals within sociology.