Abiotic stress mechanisms and enhancement in crops: Physiological and biochemical approaches


Book Description

Changes in natural ecosystems can affect biodiversity on a global scale, which in turn affects global food production. Climate change develops under different environmental conditions such as high CO2 concentration, ultraviolet radiation, temperature, salinity, rainfall intensity, etc., causing an increase in the growth of new weeds and pathogens. All these factors alone and in complex can reduce growth, complicate photosynthesis, and reduce the physiological and biochemical responses of plants. On the other hand, studies in recent years have shown that the development of a dual strategy of breeding for stress tolerance and introducing stress tolerant plants into production systems to increase their resistance to various stresses is particularly relevant today. Therefore, research related to physiological, biochemical and molecular responses of plants is of paramount importance to authorize the effects of climate-induced stresses and the likely mechanisms of resistance and/or factors mitigating these stresses in crop plants. Climate change is a dynamic, multifaceted system of modifications to environmental conditions that include abiotic and biotic factors in the world. Therefore, rapid development of studies on the integration between physiological, biochemical and molecular responses that can admit a systems analysis of plants is important, and knowledge of molecular mechanisms will provide breeding programs with relevance to obtaining cultivars tolerant to abiotic stresses with increased productivity. Under this research topic, reviews, new methods and scientific articles will be selected for publication based on applications to agriculture under climate change. This research topic will cover the following themes: - Adaptive capacity of plants to withstand climate change - The role of biodiversity in sustainable agriculture - Manipulation of microclimate for plant productivity - Role of plant extracts in plant stress mitigation - Phytoremediation and bioremediation factors for crop improvement - Perspective of underutilized crops under climate change - Contribution of plant secondary metabolism to stress tolerance - Plant tissue culture and crop improvement - The role of nanotechnology for climate-resilient agriculture - Pre-breeding and germplasm characterization for the development of agronomically relevant crop traits




Advances in Rice Research for Abiotic Stress Tolerance


Book Description

Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world’s population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses Provides practical insights into a wide range of management and crop improvement practices Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology




Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants


Book Description

Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants is a must-have reference for researchers and professionals in agronomy, plant science and horticulture. As abiotic stress tolerance is a constant challenge for researchers and professionals working on improving crop production, this book combines recent advances with foundational content, thus offering in-depth coverage on a variety of abiotic stress tolerance mechanisms that help us better understand and improve plant response and growth under stress conditions. The mechanisms explored in this book include stress perception, signal transduction and synthesis of stress-related proteins and other molecules. In addition, the book provides a critical understanding of the networks of genes responsible for abiotic stress tolerance and their utilization in the development of stress tolerance in plants. Practical breeding techniques and modern genetic analyses are also discussed. Unlocks the physiological, biochemical and molecular basis of abiotic stress response and tolerance in crop plants Presents comprehensive information on abiotic stress tolerance, from gene to whole plant level Includes content on antioxidant metabolism, marker-assisted selection, microarrays, next-generation sequencing and genome editing techniques




Abiotic Stress Response in Plants


Book Description

Plants, unlike animals, are sessile. This demands that adverse changes in their environment are quickly recognized, distinguished and responded to with suitable reactions. Drought, heat, cold and salinity are among the major abiotic stresses that adversely affect plant growth and productivity. In general, abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity. Drought, salinity, extreme temperatures (cold and heat) and oxidative stress are often interrelated; these conditions singularly or in combination induce cellular damage. To cope with abiotic stresses, of paramount significance is to understand plant responses to abiotic stresses that disturb the homeostatic equilibrium at cellular and molecular level in order to identify a common mechanism for multiple stress tolerance. This multi authored edited compilation attempts to put forth an all-inclusive biochemical and molecular picture in a systems approach wherein mechanism and adaptation aspects of abiotic stress are dealt with. The chief objective of the book hence is to deliver state of the art information for comprehending the effects of abiotic stress in plants at the cellular level.




Drought Stress Tolerance in Plants, Vol 1


Book Description

Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.




Plant Abiotic Stress Tolerance


Book Description

Plants have to manage a series of environmental stresses throughout their entire lifespan. Among these, abiotic stress is the most detrimental; one that is responsible for nearly 50% of crop yield reduction and appears to be a potential threat to global food security in coming decades. Plant growth and development reduces drastically due to adverse effects of abiotic stresses. It has been estimated that crop can exhibit only 30% of their genetic potentiality under abiotic stress condition. So, this is a fundamental need to understand the stress responses to facilitate breeders to develop stress resistant and stress tolerant cultivars along with good management practices to withstand abiotic stresses. Also, a holistic approach to understanding the molecular and biochemical interactions of plants is important to implement the knowledge of resistance mechanisms under abiotic stresses. Agronomic practices like selecting cultivars that is tolerant to wide range of climatic condition, planting date, irrigation scheduling, fertilizer management could be some of the effective short-term adaptive tools to fight against abiotic stresses. In addition, “system biology” and “omics approaches” in recent studies offer a long-term opportunity at the molecular level in dealing with abiotic stresses. The genetic approach, for example, selection and identification of major conditioning genes by linkage mapping and quantitative trait loci (QTL), production of mutant genes and transgenic introduction of novel genes, has imparted some tolerant characteristics in crop varieties from their wild ancestors. Recently research has revealed the interactions between micro-RNAs (miRNAs) and plant stress responses exposed to salinity, freezing stress and dehydration. Accordingly transgenic approaches to generate stress-tolerant plant are one of the most interesting researches to date. This book presents the recent development of agronomic and molecular approaches in conferring plant abiotic stress tolerance in an organized way. The present volume will be of great interest among research students and teaching community, and can also be used as reference material by professional researchers.




Abiotic Stress Tolerance Mechanisms in Plants


Book Description

Since recent years, the population across the globe is increasing expeditiously; hence increasing the agricultural productivity to meet the food demands of the thriving population becomes a challenging task. Abiotic stresses pose as a major threat to agricultural productivity. Having an adequate knowledge and apprehension of the physiology and molecular biology of stress tolerance in plants is a prerequisite for counteracting the adverse effect of such stresses to a wider range. This book deals with the responses and tolerance mechanisms of plants towards various abiotic stresses. The advent of molecular biology and biotechnology has shifted the interest of researchers towards unraveling the genes involved in stress tolerance. More effort is being made to understand and pave ways for developing stress tolerance mechanisms in crop plants. Several technologies including Microarray technology, functional genomics, on gel and off gel proteomic approaches have proved to be of utmost importance by helping the physiologists, molecular biologists and biotechnologists in identifying and exploiting various stress tolerance genes and factors for enhancing stress tolerance in plants. This book would serve as an exemplary source of scientific information pertaining to abiotic stress responses and tolerance mechanisms towards various abiotic stresses. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.




Plant Abiotic Stress Physiology


Book Description

This two-volume set highlights the various innovative and emerging techniques and molecular applications that are currently being used in plant abiotic stress physiology. Volume 1: Responses and Adaptations focuses on the responses and adaptations of plants to stress factors at the cellular and molecular levels and offers a variety of advanced management strategies and technologies. Volume 2: Molecular Advancements introduces a range of state-of-the-art molecular advances for the mitigation of abiotic stress in plants. With contributions from specialists in the field, Volume 1 first discusses the physiology and defense mechanisms of plants and the various kinds of stress, such as from challenging environments, climate change, and nutritional deficiencies. It goes on to discuss trailblazing management techniques that include genetics approaches for improving abiotic stress tolerance in crop plants along with CRISPR/CAS-mediated genome editing technologies. Volume 2 discusses how plants have developed diverse physiological and molecular adjustments to safeguard themselves under challenging conditions and how emerging new technologies can utilize these plant adaptations to enhance plant resistance. These include using plant-environment interactions to develop crop species that are resilient to climate change, applying genomics and phenomics approaches from the study of abiotic stress tolerance and more. Agriculture today faces countless challenges to meet the rising need for sustainable food supplies and guarantees of high-quality nourishment for a quickly increasing population. To ensure sufficient food production, it is necessary to address the difficult environmental circumstances that are causing cellular oxidative stress in plants due to abiotic factors, which play a defining role in shaping yield of crop plants. These two volumes help to meet these challenges by providing a rich source of information on plant abiotic stress physiology and effective management techniques.




Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses


Book Description

Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.




Abiotic Stress Tolerance in Crop Plants


Book Description

Abiotic stresses have become an integral part of crop production. One or other persist either in soil, water or in atmosphere. The information in the areas of injury and tolerant mechanisms, variability for tolerance, breeding and biotechnology for improvement of crop plants against abiotic stresses are lying unorganized in different articles of journals and edited books. This information is presented in this book in organized way with up-to-date citations, which will provide comprehensive literatures of recent advances. More emphasis has been given to elaborate the injury and tolerance mechanisms, and development of improved genotypes against stress environments. This book also deals with the plants' symptoms of particular abiotic stress, reclamation of soil and crop/cropping pattern to over come the effect of adverse condition(s). Each has been laid out with systematic approaches to develop abiotic stress tolerant genotypes using biotechnological tools. Use of molecular markers in stress tolerance and development of transgenic also have been detailed. Air pollution and climate change are the hot topic of the days. Thus, the effect of air pollution and climate change on crop plants have been detailed in the final three s of this book. Under abiotic stress, plant produces a large quantity of free radicals (oxidants), which have been elaborated in a separate 'Oxidative Stress'. This book has been divided into seven major parts- physical stress (salt), water stresses (drought and waterlogging), temperature stresses (heat and cold), metal toxicities (aluminium, iron, cadmium, lead, nickel, chromium, copper, zinc etc) and non-metal toxicities (boron and arsenic), oxidative stress, and finally atmospheric stresses (air pollution, radiation and climate change). Hope, this book will be of greater use for the students and researchers, particularly Plant Breeders and Biotechnologists as well as the Botanists, to understand the injury and tolerance mechanisms, and subsequently improvement of crop genotypes for abiotic stresses.