AC Motor Control and Electrical Vehicle Applications


Book Description

AC Motor Control and Electrical Vehicle Applications provides a guide to the control of AC motors with a focus on its application to electric vehicles (EV). It describes the rotating magnetic flux, based on which dynamic equations are derived. The text not only deals with the induction motor, but covers the permanent magnet synchronous motors (PMSM). Additionally, the control issues are discussed by taking into account the limitations of voltage and current. The latest edition includes more experimental data and expands upon the topics of inverter, pulse width modulation methods, loss minimizing control, and vehicle dynamics. Various EV motor design issues are also reviewed, while comparing typical types of PMSMs. Features Considers complete dynamic modeling of induction and PMSM in the rotating frame. Provides various field-oriented controls, while covering advanced topics in PMSM high speed control, loss minimizing control, and sensorless control. Covers inverter, sensors, vehicle dynamics, driving cycles, etc., not just motor control itself. Offers a comparison between BLDC, surface PMSM, and interior PMSM. Discusses how the motor produces torque and is controlled based on consistent mathematical treatments.




AC Motor Control and Electrical Vehicle Applications


Book Description

Motor control technology continues to play a vital role in the initiative to eliminate or at least decrease petroleum dependency and greenhouse gas emissions around the world. Increased motor efficiency is a crucial aspect of this science in the global transition to clean power use in areas such as industrial applications and home appliances—but particularly in the design of vehicles. Summarizes the evolution of motor driving units toward high efficiency, low cost, high power density, and flexible interface with other components AC Motor Control and Electric Vehicle Applications addresses the topics mentioned in its title but also elaborates on motor design perspective, such as back EMF harmonics, loss, flux saturation, and reluctance torque, etc. Maintaining theoretical integrity in AC motor modeling and control throughout, the author focuses on the benefits and simplicity of the rotor field-oriented control, describing the basics of PWM, inverter, and sensors. He also clarifies the fundamentals of electric vehicles and their associated dynamics, motor issues, and battery limits. A powerful compendium of practical information, this book serves as an overall useful tool for the design and control of high-efficiency motors.







AC Electric Motors Control


Book Description

The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state variable estimation in the absence of mechanical sensors, power factor correction, machine flux optimization, fault detection and isolation, and fault tolerant control. Describing the complete control approach, both controller and observer designs are demonstrated using advanced nonlinear methods, stability and performance are analysed using powerful techniques, including implementation considerations using digital computing means. Other key features: • Covers the main types of AC motors including triphase, multiphase, and doubly fed induction motors, wound rotor, permanent magnet, and interior PM synchronous motors • Illustrates the usefulness of the advanced control methods via industrial applications including electric vehicles, high speed trains, steel mills, and more • Includes special focus on sensorless nonlinear observers, adaptive and robust nonlinear controllers, output-feedback controllers, fault detection and isolation algorithms, and fault tolerant controllers This comprehensive volume provides researchers and designers and R&D engineers with a single-source reference on AC motor system drives in the automotive and transportation industry. It will also appeal to advanced students in automatic control, electrical, power systems, mechanical engineering and robotics, as well as mechatronic, process, and applied control system engineers.




AC Motor Control and Electrical Vehicle Applications


Book Description

Motor control technology continues to play a vital role in the initiative to eliminate or at least decrease petroleum dependency and greenhouse gas emissions around the world. Increased motor efficiency is a crucial aspect of this science in the global transition to clean power use in areas such as industrial applications and home appliances—but particularly in the design of vehicles. Summarizes the evolution of motor driving units toward high efficiency, low cost, high power density, and flexible interface with other components AC Motor Control and Electric Vehicle Applications addresses the topics mentioned in its title but also elaborates on motor design perspective, such as back EMF harmonics, loss, flux saturation, and reluctance torque, etc. Maintaining theoretical integrity in AC motor modeling and control throughout, the author focuses on the benefits and simplicity of the rotor field-oriented control, describing the basics of PWM, inverter, and sensors. He also clarifies the fundamentals of electric vehicles and their associated dynamics, motor issues, and battery limits. A powerful compendium of practical information, this book serves as an overall useful tool for the design and control of high-efficiency motors.




Electric Vehicle Machines and Drives


Book Description

A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material




Electric Motors and Drives


Book Description

"Electric Motors and Drives is intended for non-specialist users of electric motors and drives, filling the gap between maths- and theory-based academic textbooks and the more prosaic 'handbooks', which provide useful detail but little opportunity for the development of real insight and understanding. The book explores all of the widely-used modern types of motor and drive, including conventional and brushless D.C., induction motors and servo dries, providing readers with the knowledge to select the right technology for a given job." "The third edition includes additional diagrams and worked examples throughout. Now topics include digital interfacing and control of drives, direct torque control of induction motors and current-fed operation in DC drives. The material on brushless servomotors has also been expanded."--BOOK JACKET.




Electric Motors and Control Techniques


Book Description

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. This book will show you how different types of motors operate and how electronic control devices can be used to improve efficiency in a wide range of applications. Get greater flexibility, reliability, and reduced energy consumption from household appliances to automobiles. This book will show you how different types of motors operate and how electronic control devices can be used to improve efficiency in a wide range of applications. You'll get in-depth, updated coverage of: Electric motor control applications; dc and ac motors; Digital motors; Commutator-type motors; Noncommutator-types motors; Electric vehicles.




Electric Vehicles


Book Description

This book focuses on the latest emerging technologies in electric vehicles (EV), and their economic and environmental impact. The topics covered include different types of EV such as hybrid electrical vehicle (HEV), battery electrical vehicle (BEV), fuel cell electrical vehicle (FCEV), plug-in hybrid electrical vehicle (PHEV). Theoretical background and practical examples of conventional electrical machines, advanced electrical machines, battery energy sources, on-board charging and off-board charging techniques, and optimization methods are presented here. This book can be useful for students, researchers and practitioners interested in different problems and challenges associated with electric vehicles.




Electric Vehicle Technology Explained


Book Description

Fully updated throughout, Electric Vehicle Technology, Second Edition, is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains. This new edition includes: important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissions expanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environment brand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuels futuristic concept models, electric and high-speed trains and developments in magnetic levitation and linear motors an examination of EV efficiencies, energy consumption and sustainable power generation. MATLAB® examples can be found on the companion website www.wiley.com/go/electricvehicle2e Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering.