Accelerator-driven Sub-critical Target Concept for Transmutation of Nuclear Wastes


Book Description

A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most significant challenges in building a waste repository can be substantially reduced. The proposed machine, based on the described PHOENIX Concept, would transmute the minor actinides and the iodine produced by 75 LWRs, and would generate usable electricity (beyond that required to run the large accelerator) of 850 MW{sub e}. 19 refs., 20 figs.







Spent Nuclear Fuel and Accelerator-Driven Subcritical Systems


Book Description

This book offers a comprehensive overview of the reprocessing of spent nuclear fuels, and discusses the applications of radiation, particularly spallation neutrons and gamma rays. The unspent nuclear fuel of a reactor amounts to roughly 95 per cent of the loaded fuel. It contains both fertile and fissile fuels, minor and higher actinides and radioactive fission products. In 2015, out of approximately 4 million metric tons of spent fuel, only 90,000 metric tons was reprocessed worldwide; the rest was either sent to repositories, kept for cooling down, or put on a waiting list for future reprocessing. With regard to the direct reutilization of spent nuclear fuel, the new technique of ‘Energy Amplifiers’ has attracted considerable attention among the nuclear energy community. Presenting extensive information on this technique, the book is divided into eight major sections: (i) spent nuclear fuel and alternative transmutation methods, (ii) general concept of accelerator-driven subcritical systems (ADSS), (iii) spallation neutron sources and the possibility of incineration, (iv) requirements for nuclear data, (v) transmutation of spent nuclear fuel and extension of the fuel cycle, (vi) spallation neutron production facilities, (vii) major experimental facilities for ADSS, and (viii) software tools for the design and modelling of ADSS. The book is ideally suited as a textbook for graduate students as well as a reference guide for researchers and practitioners.




Status of Accelerator Driven Systems Research and Technology Development


Book Description

One of the greatest challenges for nuclear energy is how to properly manage the highly radioactive waste generated during irradiation in nuclear reactors. Accelerator Driven Systems (ADSs) may offer new prospects and advantages for the transmutation of such high level nuclear waste. ADS or accelerator driven transmutation of waste (ATW) consists of a high power proton accelerator, a heavy metal spallation target that produces neutrons when bombarded by the high power beam, and a sub-critical core that is neutronically coupled to the spallation target. This publication provides a comprehensive state of the art of the ADS technology by representing the different ADS concepts proposed worldwide in the last 15 years, as well as the related R&D activities and demonstration initiatives carried out at national international level.




High Power Ring Methods and Accelerator Driven Subcritical Reactor Application


Book Description

High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today's technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the transverse beam dynamics. The results obtained allow to develop a correction scheme to minimize the tune variations of the FFAG. This is the cornerstone of a new fixed tune non-scaling FFAG that represents a potential candidate for high power applications. As part of the developments towards high power at the KURRI FFAG, beam dynamics studies have to account for space charge effects. In that framework, models have been installed in the tracking code ZGOUBI to account for the self-interaction of the particles in the accelerator. Application to the FFAG studies is shown. Finally, one focused on the ADSR concept as a candidate to solve the problem of nuclear waste. In order to establish the accelerator requirements, one compared the performance of ADSR with other conventional critical reactors by means of the levelized cost of energy. A general comparison between the different accelerator technologies that can satisfy these requirements is finally presented. In summary, the main drawback of the ADSR technology is the high Levelized Cost Of Energy compared to other advanced reactor concepts that do not employ an accelerator. Nowadays, this is a show-stopper for any industrial application aiming at producing energy (without dealing with the waste problem). Besides, the reactor is not intrinsically safer than critical reactor concepts, given the complexity of managing the target interface between the accelerator and the reactor core.




High Power Ring Methods and Accelerator Driven Subcritical Reactor Application


Book Description

High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in thesynthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept ofsub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective ofachieving cleaner, safer and more efficient process than today's technologies allow.Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime,MW power class still remains a challenge nowadays. There is a limited number of installations at presentachieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS inOakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MWbeam from a linear accelerator.Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some ofthe key issues/requirements are the design of a spallation target to withstand high power densities as well asensure the safety of the installation.These two domains are the grounds of the PhD work: the focus is on the high power ring methods inthe frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensityis crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamicsand benchmarking of different codes was undertaken to validate the simulation results. Experimental resultsrevealed some major losses that need to be understood and eventually overcome.By developing analytical models that account for the field defects, one identified major sources of imperfectionin the design of scaling FFAG that explain the important tune variations resulting in the crossing of severalbetatron resonances. A new formula is derived to compute the tunes and properties established that characterizethe effect of the field imperfections on the transverse beam dynamics. The results obtained allow to developa correction scheme to minimize the tune variations of the FFAG. This is the cornerstone of a new fixed tunenon-scaling FFAG that represents a potential candidate for high power applications.As part of the developments towards high power at the KURRI FFAG, beam dynamics studies have toaccount for space charge effects. In that framework, models have been installed in the tracking code ZGOUBIto account for the self-interaction of the particles in the accelerator. Application to the FFAG studies is shown.Finally, one focused on the ADSR concept as a candidate to solve the problem of nuclear waste. In orderto establish the accelerator requirements, one compared the performance of ADSR with other conventionalcritical reactors by means of the levelized cost of energy. A general comparison between the different acceleratortechnologies that can satisfy these requirements is finally presented.In summary, the main drawback of the ADSR technology is the high Levelized Cost Of Energy comparedto other advanced reactor concepts that do not employ an accelerator. Nowadays, this is a show-stopper forany industrial application aiming at producing energy (without dealing with the waste problem). Besides, thereactor is not intrinsically safer than critical reactor concepts, given the complexity of managing the targetinterface between the accelerator and the reactor core.




Nuclear Wastes


Book Description

Disposal of radioactive waste from nuclear weapons production and power generation has caused public outcry and political consternation. Nuclear Wastes presents a critical review of some waste management and disposal alternatives to the current national policy of direct disposal of light water reactor spent fuel. The book offers clearcut conclusions for what the nation should do today and what solutions should be explored for tomorrow. The committee examines the currently used "once-through" fuel cycle versus different alternatives of separations and transmutation technology systems, by which hazardous radionuclides are converted to nuclides that are either stable or radioactive with short half-lives. The volume provides detailed findings and conclusions about the status and feasibility of plutonium extraction and more advanced separations technologies, as well as three principal transmutation concepts for commercial reactor spent fuel. The book discusses nuclear proliferation; the U.S. nuclear regulatory structure; issues of health, safety and transportation; the proposed sale of electrical energy as a means of paying for the transmutation system; and other key issues.




Accelerator Driven Subcritical Reactors


Book Description

This book describes the basic knowledge in nuclear, neutron, and reactor physics necessary for understanding the principle and implementation of accelerator driven subcritical nuclear reactors (ADSRs), also known as hybrid reactors. Since hybrid reactors may contribute to future nuclear energy production, the book begins with a discussion of




A Study on the Feasibility of Electron-based Accelerator Driven Systems for Nuclear Waste Transmutation


Book Description

Nuclear waste transmutation is an important option for the development of advanced fuel cycle and effective nuclear waste management. The electron accelerator driven system (ADS) was investigated in the study for nuclear waste transmutation as an alternative to proton based ADS. Target design and optimization was carried out to obtain maximum neutron generation. Subcritical core design based on single and multiple targets was investigated. System performance between electron-based ADS and proton-based ADS was compared in terms of neutron generation rate, transmutation efficiency and power generation. It was determined that the electron-based target was capable of providing high neutron flux, small target geometry size, small scale subcritical core, and low radiation damage. Multiple target design in the electron-driven ADS was also explored to flatten power distribution in the ADS subcritical core. Regarding transmutation, the power peaking factors in both the electron- and proton- ADS increase ~ 10% during the burnup period of 700 days. Thermal power in proton ADS is higher than that of electron ADS by a factor ~ 20. The transmutation effectiveness of preliminary electron-based ADS is smaller by a factor of 11 compared to preliminary proton-based ADS. Proton ADS has higher radiation damage to target materials and surrounding materials. The capital cost for electron-based and proton-based accelerator facility is fairly comparable with the cost of proton-based facilities being slightly higher by a factor of 20%. Comparing with the proton-driven ADS, the electron-driven ADS pros include small target size and small core scale, multiple target possibility for low PPF, low radiation damage to target surroundings, wide availability electron beam at ~100 MeV, and low capital cost of electron accelerator facility. There are also aspects against electron-driven ADS, including low efficiency of neutron generation rate, low transmutation efficiency, low thermal power, and elec.




Utilisation and Reliability of High Power Proton Accelerators


Book Description

This publication presents the proceedings of a NEA workshop, held in May 2002 in the US, to discuss RandD activities regarding the use of high power proton accelerators in nuclear energy systems. Issues discussed include: the reliability of the accelerator and the impact of beam interruptions on the design and performance of accelerator-driven systems; spallation target design characteristics and their impact on the subcritical system design; safety and operational characteristics of a subcritical system driven by a spallation source; and test facilities.