Neglected and Underutilized Crop Species for Sustainable Food and Nutritional Security: Prospects and Hidden Potential


Book Description

Global demand for food is rising as a result of increases in the global population as well as dietary changes. Furthermore, climate change exerts additional pressure on the food supply, adversely affecting sustainable food production. Increased temperatures and drought stresses coupled with the migration of pests limit crop yields and affect their nutritional quality. Many staple crops are unable to adapt to these changing climatic conditions. To achieve the Sustainable Development Goals of the United Nation to end hunger and promote good health and well-being, concerted efforts need to be made to enhance food production while mitigating the effects of climate change through the promotion of climate-smart agricultural practices and the utilization of neglected and underutilized crop species. These species can be highly nutritious and well-adapted to different agroecologies and climatic conditions, meaning that they offer the possibility of improving food and nutritional security.







The Pearl Millet Genome


Book Description




Genetic and Agro-Morphological Diversity and Genotype by Environment Interaction of Yield and Nutritional Quality Traits in Pearl Millet Germplasm from Sudan


Book Description

Due to its adaptation to extremely harsh environments, pearl millet (Pennisetum glaucum (L) R. Br.) is one of the most important staple cereals cultivated in the arid and semi-arid tropics of Asia and Africa. In these regions pearl millet is mainly produced under low-input, rainfed conditions in traditional farming systems, where several constrains are affecting pearl millet production, such as inter-annual rainfall variability, pests, diseases, Striga and use of low yielding varieties. The majority of the human population in these regions is affected by nutritional deficiencies of essential minerals causing micronutrient malnutrition (so-called ‘hidden hunger’). Plant genetic resources provide basic materials for selection and improvement of crop productivity through the optimal design of breeding programs to meet food security needs of the world’s rapidly rising population. The advent of PCR-based molecular markers such as simple sequence repeats (SSRs) has created an opportunity for fine-scale genetic characterization of germplasm collections. Understanding the structure of diversity and the identification of distinct materials with complementary traits for recombination by crossing provides the foundation for effective and sustained pearl millet population breeding and synthetic and hybrid development, based on the concept of heterotic groups in this allogamous crop.




The Pearl Millet Genome


Book Description

This book entitled, The Pearl Millet Genome, is the first comprehensive compilation of deliberations on history, domestication, genetic and genomic resources, traditional breeding, genetic diversity, molecular maps and mapping of important biotic stress as well as nutritional quality traits, whole genome sequencing and comparative genomics, functional genomics, genetic transformation. The economic, nutritional, and health importance of the pearl millet is also discussed. It also presents the input use efficiency and wide adaptation of the crop. Altogether, the book will contain about 200 pages over 10 chapters authored by globally reputed experts on the relevant field in this crop. This book will be useful to the students, teachers, and scientists in the academia and relevant private companies interested in genetics, pathology, molecular genetics and breeding, genetic engineering, structural and functional genomics, and nutritional quality aspects of the crop. This book will also be also useful to seed and pharmaceutical industries.




Omics of Climate Resilient Small Millets


Book Description

This edited book covers all aspects of omics approaches used for the varietal improvement of millets in changing climatic conditions. Millets are the collection of small-grained cereal grasses, that are grown for human carbohydrate needs. They are among the oldest crops, mainly divided into two groups – Major and small millets based on seed size. Small millets are earlier considered orphan crops, but recently due to their nutritional values, they are getting importance in cultivation. This book explores the genomics, transcriptomics, proteomics, metabolomics, bioinformatics, and other omics tools that are being widely used to get a clear understanding of mechanistic approaches taken by plant genes to tolerate stress. Various reports are published based on field breeding on these crops, and recently the genome of some of the small millets is released, and many omics studies are published related to its application in varietal improvements. This book reviewed all those recent studies and is of interest to research students, plant breeding scientists, teachers that are working in agriculture and plant biotech universities. Along with this, the book serves as reference material for undergraduate and graduate students of agriculture, and biotechnology. National and international agricultural scientists, policymakers will also find this to be a useful read.







Drought phenotyping in crops: From theory to practice


Book Description

This topic is a unique attempt to simultaneously tackle theoretical and practical aspects in drought phenotyping, through both crop-specific and cross-cutting approaches. It is designed for – and will be of use to – practitioners and postgraduate students in plant science, who are grappling with the challenging task of evaluating germplasm performance under different water regimes. In Part I, different methodologies are presented for accurately characterising environmental conditions, implementing trials, and capturing and analysing the information this generates, regardless of the crop. Part II presents the state-of-art in research on adaptation to drought, and recommends specific protocols to measure different traits in major food crops (focusing on particular cereals, legumes and clonal crops). The topic is part of the CGIAR Generation Challenge Programme’s efforts to disseminate crop research information, tools and protocols, for improving characterisation of environments and phenotyping conditions. The goal is to enhance expertise in testing locations, and to stimulate the development and use of traits related to drought tolerance, as well as innovative protocols for crop characterisation and breeding.