Theory of Black Hole Accretion Discs


Book Description

The first comprehensive and up-to-date review of our new understanding of accretion disks around black holes - with chapters from experts from around the world.




Accretion Disks In Compact Stellar Systems


Book Description

Accretion disks in compact stellar systems containing white dwarfs, neutron stars or black holes are the principal laboratory for understanding the role of accretion disks in a wide variety of environments from proto-stars to quasars. Recent work on disk instabilities and dynamics has given a new theoretical framework with which to study accretion disks. Modeling of time-dependent phenomena provides new insight into the causes and interpretation of photometric and spectroscopic variability and new constraints on the fundamental physical problem — the origin of viscosity in accretion disks. This book contains expert reviews on the nature of limit cycle thermal instabilities and a variety of closely related topics from the theory of angular momentum transport to eclipse mapping of the disk structure. The result is a comprehensive contemporary survey of the structure and evolution of accretion disks in compact binary systems.




Accretion Disks and Magnetic Fields in Astrophysics


Book Description

Proceeding of the European Physical Society Study Conference, held in Noto (Sicily), Italy, June 16-20, 1988







Theory of Accretion Disks


Book Description

With the advent of space observatories and modern developments in ground based astronomy and concurrent progress in the theoretical understanding of these observations it has become clear that accretion of material on to compact objects is an ubiquitous mechanism powering very diverse astrophysical sources ranging in size and luminosity by many orders of magnitude. A problem common to these systems is that the material accreted must in general get rid of its angular momentum and this leads to the formation of an Accretion Disk which allows angular momentum re-distribution and converts potential energy into radiation with an efficiency which can be higher than the nuclear burning yield. These systems range in size from quasars and active galactic nuclei to accretion disks around forming stars and the early solar system and to compact binaries such as cataclysmic variables and low-mass X-ray binaries. Other objects that should be mentioned in this context are 88433, the black hole binary candidates, and possibly gamma-ray burst sources. Observations of these systems have provided important constraints for theoretical accretion disk models on widely differing scales, lumi nosities, mass-transfer rates and physical environments.




Theory of Accretion Disks 2


Book Description

Accretion disks in astrophysics represent the characteristic flow by which compact bodies accrete mass from their environment. Their intrinsically high luminosity, and recent progress in observational accessibility at all wavelength bands, have led to rapidly growing awareness of their importance and made them the object of intense research on widely different scales, ranging from binary stars to young stellar objects and active galactic nuclei. This book contains the proceedings of the NATO Advanced Workshop on `Theory of Accretion Disks 2' for which some of the most active researchers in the different fields came together at the Max-Planck-Institut for Astrophysics in Garching in March, 1993. Its reviews and contributions give an up-to-date account of the present status of our understanding and provide a stimulating challenge in discussions of open questions in a rapidly developing field.




Galileo Unbound


Book Description

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.




Accretion Flows in Astrophysics


Book Description

This book highlights selected topics of standard and modern theory of accretion onto black holes and magnetized neutron stars. The structure of stationary standard discs and non-stationary viscous processes in accretion discs are discussed to the highest degree of accuracy analytic theory can provide, including relativistic effects in flat and warped discs around black holes. A special chapter is dedicated to a new theory of subsonic settling accretion onto a rotating magnetized neutron star. The book also describes supercritical accretion in quasars and its manifestation in lensing events. Several chapters cover the underlying physics of viscosity in astrophysical discs with some important aspects of turbulent viscosity generation. The book is aimed at specialists as well as graduate students interested in the field of theoretical astrophysics.




Black-Hole Accretion Disks


Book Description




Accretion Power in Astrophysics


Book Description

Accretion Power in Astrophysics examines accretion as a source of energy in both binary star systems containing compact objects, and in active galactic nuclei. Assuming a basic knowledge of physics, the authors describe the physical processes at work in accretion discs and other accretion flows. The first three chapters explain why accretion is a source of energy, and then present the gas dynamics and plasma concepts necessary for astrophysical applications. The next three chapters then develop accretion in stellar systems, including accretion onto compact objects. Further chapters give extensive treatment of accretion in active galactic nuclei, and describe thick accretion discs. A new chapter discusses recently discovered accretion flow solutions. The third edition is greatly expanded and thoroughly updated. New material includes a detailed treatment of disc instabilities, irradiated discs, disc warping, and general accretion flows. The treatment is suitable for advanced undergraduates, graduate students and researchers.