Acidification and Hypoxia in Marginal Seas


Book Description

The image is modified based on Figure 1a of Lucey et al. (this Research Topic) and Figure 7b of Niemi et al. (this Research Topic). (A) Graphical depiction of atmospheric warming and increasing atmospheric carbon dioxide (CO2atm), which drives ocean warming, contribute to the decreases in dissolved oxygen (DO), and lowers pH and saturation state index of calcium carbonate (Ω). The partial pressure of CO2 (pCO2) increases due to increasing atmospheric CO2 that is absorbed into the seawater (i.e., ocean acidification), along with other biological processes in the marine environment. (B) Scanning Electron Microscope (SEM) image showing dissolution on pteropod shells collected in the Amundsen Gulf in the Canadian Arctic, in 2017. Lucey N, Haskett E and Collin R (2020) Multi-stressor Extremes Found on a Tropical Coral Reef Impair Performance. Front. Mar. Sci. 7:588764. doi: 10.3389/fmars.2020.588764 Niemi A, Bednaršek N, Michel C, Feely RA, Williams W, Azetsu-Scott K, Walkusz W and Reist JD (2021) Biological Impact of Ocean Acidification in the Canadian Arctic: Widespread Severe Pteropod Shell Dissolution in Amundsen Gulf. Front. Mar. Sci. 8:600184. doi: 10.3389/fmars.2021.600184










Evolution of Marine Coastal Ecosystems under the Pressure of Global Changes


Book Description

Coastal and estuarine environments at the interface of terrestrial and marine areas are among the most productive in the world. However, since the beginning of the industrial era, these ecosystems have been subjected to strong anthropogenic pressures intensified from the second half of the 20th century, when there was a marked acceleration in the warming (climate change) of the continents, particularly at high latitudes. Coastal ecosystems are highly vulnerable to alteration of their physical, chemical and biological characteristics (marine intrusion, acidification of marine environments, changes in ecosystems, evolution and artificialization of the coastline, etc.).In contact with heavily populated areas, these environments are often the receptacle of a lot of chemical and biological pollution sources that significantly diminish their resilience. In this context of accelerated evolution and degradation of these areas important for food security of many populations around the world, it is necessary to better identify the factors of pressure and understand, at different scales of observation, their effects and impacts on the biodiversity and on the socio-eco-systems, in order to determine the degree of vulnerability of these coastal ecosystems and the risks they face. A transdisciplinary and integrated approach is required to prevent risks. Within this framework, operational coastal oceanography occupies an important place but also the implementation of a true socio-eco-system approach in order to set up an environmentally friendly development.




Bridging the gap between ocean acidification impacts and economic valuation


Book Description

Following the first international workshop on the economics of ocean acidification organized by the Centre Scientifique de Monaco and the International Atomic Energy Agency in 2010, a second international workshop was held in November 2012, which explored the level of risk, and the resilience or vulnerability of defined regions of the world ocean in terms of fishery and aquaculture species and economic impacts, and social adaptation. This report includes the findings and recommendations of the respective regional working groups and is the result of an interdisciplinary survey of ocean acidification-sensitive fisheries and aquaculture.







Changing Asia-Pacific Marginal Seas


Book Description

This book discusses temporal changes in six Asia-Pacific marginal seas and two west boundary currents in the Northwest Pacific. Covering time scales varying from years to decades, it provides a comprehensive review of the long-term changes in various physical variables, including sea level, sea surface temperature, water mass index, current and transport, as well as local issues such as sea ice and tidal mixing, and the processes and dynamics that govern them. The book also examines biogeochemical variables, such as nutrients, oxygen, pH, water transparency, ocean acidification, eutrophication and productivity, and explores future trends. Offering a holistic view of the changes that have occurred in the Asia-Pacific marginal seas and those that are likely to occur in the future, this book will appeal to readers from all fields of oceanography.




Ocean Acidification


Book Description

The ocean has absorbed a significant portion of all human-made carbon dioxide emissions. This benefits human society by moderating the rate of climate change, but also causes unprecedented changes to ocean chemistry. Carbon dioxide taken up by the ocean decreases the pH of the water and leads to a suite of chemical changes collectively known as ocean acidification. The long term consequences of ocean acidification are not known, but are expected to result in changes to many ecosystems and the services they provide to society. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean reviews the current state of knowledge, explores gaps in understanding, and identifies several key findings. Like climate change, ocean acidification is a growing global problem that will intensify with continued CO2 emissions and has the potential to change marine ecosystems and affect benefits to society. The federal government has taken positive initial steps by developing a national ocean acidification program, but more information is needed to fully understand and address the threat that ocean acidification may pose to marine ecosystems and the services they provide. In addition, a global observation network of chemical and biological sensors is needed to monitor changes in ocean conditions attributable to acidification.




Climate Change, Ocean Acidification and Sponges


Book Description

While sponges represent a very simple group of organisms, which are represented by over 8000 species, there is considerable interest in the increasing role they may play in future marine ecosystems. While we still have a comparatively limited understanding of how sponges will respond to ocean warming and acidification there is evidence that some species may have the ability to acclimate or even adapt to these stressors. This comprehensive collection of articles describes our current understanding of the impacts of ocean acidification and warming on sponges across multiple levels of biological organisation, and from the geological past to the present. With expert contributions from across the world this book represents the most up-to-date view on sponge responses to climate change. This book will be of interest to a wide audience of marine scientists and managers, who are grappling with how to manage, conserve and protect marine ecosystems.




The Ocean and Cryosphere in a Changing Climate


Book Description

The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.