Acoustic Analyses Using Matlab® and Ansys®


Book Description

Techniques and Tools for Solving Acoustics Problems This is the first book of its kind that describes the use of ANSYS® finite element analysis (FEA) software, and MATLAB® engineering programming software to solve acoustic problems. It covers simple text book problems, such as determining the natural frequencies of a duct, to progressively more complex problems that can only be solved using FEA software, such as acoustic absorption and fluid-structure-interaction. It also presents benchmark cases that can be used as starting points for analysis. There are practical hints too for using ANSYS software. The material describes how to solve numerous problems theoretically, and how to obtain solutions from the theory using MATLAB engineering software, as well as analyzing the same problem using ANSYS Workbench and ANSYS Mechanical APDL. Developed for the Practicing Engineer Free downloads on http://www.mecheng.adelaide.edu.au/avc/software, including MATLAB source code, ANSYS APDL models, and ANSYS Workbench models Includes readers’ techniques and tips for new and experienced users of ANSYS software Identifies bugs and deficiencies to help practitioners avoid making mistakes Acoustic Analyses Using MATLAB® and ANSYS® can be used as a textbook for graduate students in acoustics, vibration, and related areas in engineering; undergraduates in mechanical and electrical engineering; and as an authoritative reference for industry professionals.




Foundations of Vibroacoustics


Book Description

This text provides the foundation material for solving problems in vibroacoustics. These include the prediction of structural vibration levels and sound pressure levels in enclosed spaces resulting from known force or acoustic pressure excitations and the prediction of sound levels radiated by vibrating structures. The book also provides an excellent theoretical basis for understanding the processes involved in software that predicts structural vibration levels and structural sound radiation resulting from force excitation of the structure, as well as sound levels in enclosed spaces resulting from vibration of part of the enclosing structure or resulting from acoustic sources within the enclosure. The book is written in an easy to understand style with detailed explanations of important concepts. It begins with fundamental concepts in vibroacoustics and provides a framework for problem solution in both low and high frequency ranges. It forms a primer for students, and for those already well versed in vibroacoustics, the book provides an extremely useful reference. It offers a unified treatment of both acoustics and vibration fundamentals to provide a basis for solving problems involving structural vibration, sound radiation from vibrating structures, sound in enclosed spaces, and propagation of sound and vibration.







Emerging Design Solutions in Structural Health Monitoring Systems


Book Description

"This book seeks to advance cutting-edge research in the field, with a special focus on cross-disciplinary work involving recent advances in IT, enabling structural-health experts to wield groundbreaking new models of artificial intelligence as a diagnostic tool capable of identifying future problems before they even appear"--Provided by publisher.




Advances in Acoustics and Vibration IV


Book Description

The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the Fourth International Conference on Acoustics and Vibration (ICAV2022), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held in hybrid format on December 19–21, 2022, in and from Sousse, Tunisia. The contributions cover advances in both theory and practice in a variety of subfields, such as structural and machine dynamics and vibrations, fault diagnosis and prognosis, nonlinear dynamics, and vibration control of mechatronic systems. Further topics include fluid–structure interaction, computational vibro-acoustics, vibration field measurements, and dynamic behavior of materials. This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theories with industrial issues, it is expected to facilitate communication and collaboration between different groups of researchers and technology users.




R & D


Book Description




Engineering Noise Control


Book Description

This classic and authoritative student textbook contains information that is not over simplified and can be used to solve the real world problems encountered by noise and vibration consultants as well as the more straightforward ones handled by engineers and occupational hygienists in industry. The book covers the fundamentals of acoustics, theoretical concepts and practical application of current noise control technology. It aims to be as comprehensive as possible while still covering important concepts in sufficient detail to engender a deep understanding of the foundations upon which noise control technology is built. Topics which are extensively developed or overhauled from the fourth edition include sound propagation outdoors, amplitude modulation, hearing protection, frequency analysis, muffling devices (including 4-pole analysis and self noise), sound transmission through partitions, finite element analysis, statistical energy analysis and transportation noise. For those who are already well versed in the art and science of noise control, the book will provide an extremely useful reference. A wide range of example problems that are linked to noise control practice are available on www.causalsystems.com for free download.




Computational Acoustics


Book Description

Covers the theory and practice of innovative new approaches to modelling acoustic propagation There are as many types of acoustic phenomena as there are media, from longitudinal pressure waves in a fluid to S and P waves in seismology. This text focuses on the application of computational methods to the fields of linear acoustics. Techniques for solving the linear wave equation in homogeneous medium are explored in depth, as are techniques for modelling wave propagation in inhomogeneous and anisotropic fluid medium from a source and scattering from objects. Written for both students and working engineers, this book features a unique pedagogical approach to acquainting readers with innovative numerical methods for developing computational procedures for solving problems in acoustics and for understanding linear acoustic propagation and scattering. Chapters follow a consistent format, beginning with a presentation of modelling paradigms, followed by descriptions of numerical methods appropriate to each paradigm. Along the way important implementation issues are discussed and examples are provided, as are exercises and references to suggested readings. Classic methods and approaches are explored throughout, along with comments on modern advances and novel modeling approaches. Bridges the gap between theory and implementation, and features examples illustrating the use of the methods described Provides complete derivations and explanations of recent research trends in order to provide readers with a deep understanding of novel techniques and methods Features a systematic presentation appropriate for advanced students as well as working professionals References, suggested reading and fully worked problems are provided throughout An indispensable learning tool/reference that readers will find useful throughout their academic and professional careers, this book is both a supplemental text for graduate students in physics and engineering interested in acoustics and a valuable working resource for engineers in an array of industries, including defense, medicine, architecture, civil engineering, aerospace, biotech, and more.




Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures


Book Description

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str




Dynamic Response of Infrastructure to Environmentally Induced Loads


Book Description

This book provides state of the art coverage of important current issues in the analysis, measurement, and monitoring of the dynamic response of infrastructure to environmental loads, including those induced by earthquake motion and differential soil settlement. The coverage is in five parts that address numerical methods in structural dynamics, soil–structure interaction analysis, instrumentation and structural health monitoring, hybrid experimental mechanics, and structural health monitoring for bridges. Examples that give an impression of the scope of the topics discussed include the seismic analysis of bridges, soft computing in earthquake engineering, use of hybrid methods for soil–structure interaction analysis, effects of local site conditions on the inelastic dynamic analysis of bridges, embedded models in wireless sensor networks for structural health monitoring, recent developments in seismic simulation methods, and seismic performance assessment and retrofit of structures. Throughout, the emphasis is on the most significant recent advances and new material. The book comprises extended versions of contributions delivered at the DE-GRIE Lab Workshop 2014, held in Thessaloniki, Greece, in November 2014.